Problem 1: 8 points

In the following problems, suppose that K, K_{1} and K_{2} are kernels with feature maps ϕ, ϕ^{1} and ϕ^{2}. For the following functions $K^{\prime}(x, z)$, state if they are kernels or not. If they are kernels, write down the corresponding feature map, in terms of ϕ, ϕ^{1}, ϕ^{2} and c, c_{1}, c_{2}. If they are not kernels, prove that they are not.

1. $K^{\prime}(x, z)=c K(x, z)$, for $c>0$.
2. $K^{\prime}(x, z)=c K(x, z)$, where $c<0$, and there exists some x for which $K(x, x)>0$.
3. $K^{\prime}(x, z)=c_{1} K_{1}(x, z)+c_{2} K_{2}(x, z)$ for $c_{1}, c_{2}>0$.
4. $K^{\prime}(x, z)=K_{1}(x, z) K_{2}(x, z)$.

Problem 2: 14 points

For the following functions $K(x, z)$, state if it is a kernel or not. If the function is a kernel, then write down its feature map. If it is not a kernel, prove that it is not one. For your proof, you can use the answers to Problem 1.

1. $x=\left[x_{1}, x_{2}\right], z=\left[z_{1}, z_{2}\right], x_{1}, x_{2}, z_{1}, z_{2}$ are real numbers. $K(x, z)=x_{1} z_{2}$.
2. Let $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right], x_{i}$ s and z_{i} s are real numbers. $K(x, z)=1-\langle x, z\rangle$.
3. $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right]$, and f is a function. $K(x, z)=f\left(x_{1}, x_{2}\right) f\left(z_{1}, z_{2}\right)$.
4. $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right], x_{i}$ s and z_{i} s are integers between 0 and 100. $K(x, z)=\sum_{i=1}^{d} \min \left(x_{i}, z_{i}\right)$.
5. $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right], x_{i} \mathrm{~s}$ and $z_{i} \mathrm{~s}$ are real numbers.

$$
K(x, z)=\left(1+x_{1} z_{1}\right)\left(1+x_{2} z_{2}\right) \ldots\left(1+x_{d} z_{d}\right)
$$

6. $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right], x_{i}$ s and z_{i} s are integers between 0 and 100. $K(x, z)=\sum_{i=1}^{d} \max \left(x_{i}, z_{i}\right)$.
7. x are z are documents with words from some dictionary $D . K(x, z)$ is the number of words that occur in both x and z, where each unique common word is counted once.
