
CSE 151: Introduction to Machine Learning Spring 2018

Problem Set 3
Instructor: Kamalika Chaudhuri Due on: never

Problem 1: 8 points
A group of biologists would like to determine which genes are associated with a certain form of liver cancer.
After much research, they have narrowed the possibilities down to two genes, let us call them A and B. After
analyzing a lot of data, they have also calculated the following joint probabilities.

Cancer No Cancer
Gene A 1

2
1
10

No Gene A 1
5

1
5

Cancer No Cancer
Gene B 2

5
3
20

No Gene B 3
10

3
20

1. Let X denote the 0/1 random variable which is 1 when a patient has cancer and 0 otherwise. Let Y
denote the 0/1 random variable which is 1 when gene A is present, 0 otherwise, and let Z denote the
0/1 random variable which is 1 when gene B is present and 0 otherwise. Write down the conditional
distributions of X|Y = y for y = 0, 1 and X|Z = z, for z = 0, 1.

2. Calculate the conditional entropies H(X|Y ) and H(X|Z).

3. Based on these calculations, which of these genes do you think are more informative about the cancer?

Solutions
1. First, we can compute the marginal distributions of Y and Z as follows,

y 0 1
P (Y = y) 2

5
3
5

z 0 1
P (Z = z) 9

20
11
20

Then, by definition of conditional probability, i.e. P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
, we can get

the conditional distributions of X|Y as follows.

x 0 1
P (X = x|Y = 0) 1

2
1
2

P (X = x|Y = 1) 1
6

5
6

Similarly we have the conditional distributions of X|Z as follows,

x 0 1
P (X = x|Z = 0) 1

3
2
3

P (X = x|Z = 1) 3
11

8
11

2. By the definition of conditional entropy, H(X|Y ) = P (Y = 0)H(X|Y = 0) + P (Y = 1)H(X|Y = 1).

H(X|Y = 0) = −P (X = 0|Y = 0) logP (X = 0|Y = 0)− P (X = 1|Y = 0) logP (X = 1|Y = 0)

= −
1

2
log

1

2
−

1

2
log

1

2
= log 2



Similarly we have

H(X|Y = 1) = −P (X = 0|Y = 1) logP (X = 0|Y = 1)− P (X = 1|Y = 1) logP (X = 1|Y = 1)

= −
1

6
log

1

6
−

5

6
log

5

6

= log 6−
5

6
log 5

Thus
H(X|Y ) = P (Y = 0)H(X|Y = 0) + P (Y = 1)H(X|Y = 1)

=
2

5
log 2 +

3

5

(
log 6−

5

6
log 5

)
=

2

5
log 2 +

3

5
log 6−

1

2
log 5

For H(X|Z), we can get

H(X|Z = 0) = −P (X = 0|Z = 0) logP (X = 0|Z = 0)− P (X = 1|Z = 0) logP (X = 1|Z = 0)

= −
1

3
log

1

3
−

2

3
log

2

3

= log 3−
2

3
log 2

Similarly we have

H(X|Z = 1) = −P (X = 0|Z = 1) logP (X = 0|Z = 1)− P (X = 1|Z = 1) logP (X = 1|Z = 1)

= −
3

11
log

3

11
−

8

11
log

8

11

= log 11−
3

11
log 3−

8

11
log 8

Thus
H(X|Z) = P (Z = 0)H(X|Z = 0) + P (Z = 1)H(X|Z = 1)

=
9

20

(
log 3−

2

3
log 2

)
+

11

20

(
log 11−

3

11
log 3−

8

11
log 8

)
= −

3

2
log 2 +

3

10
log 3 +

11

20
log 11

Using natural logarithm, the numerical values are shown as follows.

H(X|Y = 0) 0.693147180560
H(X|Y = 1) 0.450561208866
H(X|Y ) 0.547595597544
H(X|Z = 0) 0.63651416829
H(X|Z = 1) 0.5859526183
H(X|Z) 0.6087053158

3. From the table above, H(X|Y ) < H(X|Z). This suggests that there is less uncertainty in X when
given Y than when given Z. Therefore gene A is more informative about the cancer.

Problem 2: 8 points
Since a decision tree is a classifier, it can be thought of as a function that maps a feature vector x in some
set X to a label y in some set Y. We say two decision trees T and T ′ are equal if for all x ∈ X , T (x) = T ′(x).



The following are some statements about decision trees. For these statements, assume that X = Rd,
that is, the set of all d-dimensional feature vectors. Also assume that Y = {1, 2, . . . , k}. Write down if each
of these statements are correct or not. If they are correct, provide a brief justification or proof; if they are
incorrect, provide a counterexample to illustrate a case when they are incorrect.

1. If the decision trees T and T ′ do not have exactly the same structure, then they can never be equal.

2. If T and T ′ are any two decision trees that produce zero error on the same training set, then they are
equal.

Solutions
1. False.

Counterexample: Consider a classifier for data which uses one feature (called Feature1).

Figure 1: Two Decision Trees which are equal (see definition in question) but have different structures

2. False.
If T and T ′ produce zero error on the same training set S ⊆ X , then, ∀x ∈ S, T (x) = T ′(x). However,
the training set typically does not include all elements in feature space X . Thus, there exist such
x0 ∈ X − S that T (x0) 6= T ′(x0). For example, consider the following training set:

Feature 1 Feature 2 Label
0 0 0
1 1 1

For training set above, the two decision trees shown in Figure 2 both produce zero error. However, for
the point x1 = (0, 1) or the point x2 = (1, 0), these two trees would give different predictions. Hence
they are not equal.

Figure 2: Two Decision Trees with Zero Error on S

Problem 3: 8 points
1. A fair coin (that is, a coin with equal probability of coming up heads and tails) is flipped until the first

head occurs. Let X denote the number of flips required. What is the entropy H(X) of X? You may



find the following expressions useful:

∞∑
j=0

rj =
1

1− r
,

∞∑
j=0

jrj =
r

(1− r)2

2. Let X be a discrete random variable which takes values x1, . . . , xm and let Y be a discrete random
variable which takes values xm+1, . . . , xm+n. (That is, the values taken by X and the values taken by
Y are disjoint.) Let:

Z = X with probability α
= Y with probability 1− α

Find H(Z) as a function of H(X), H(Y ) and α.

Solutions
1. Observe that X is a random variable which takes values k = 1, 2, 3, . . . ,. For a fixed integer k, we need
k flips to get the first head if the first k − 1 tosses come up tails, and the k-th toss comes up a head.
Therefore,

pk = Pr(X = k) =
1

2k−1
· 1
2
=

1

2k

Therefore,

H(X) = −
∞∑
k=1

pk log pk = −
∞∑
k=1

1

2k
log

1

2k
=

∞∑
k=1

log 2 · k
2k

The last step follows because log 1
2k

= −k log 2. From the expressions given above, the sum is:

∞∑
k=1

k

2k
=

∞∑
k=0

k

2k
=

1
2

(1− 1
2 )

2
= 2

Thus, H(X) = 2 log 2.

2. Let pi = Pr(X = xi) and let qj = Pr(Y = xm+j). Then, H(X) = −
∑m

i=1 pi log pi and H(Y ) =
−
∑n

j=1 qj log qj . By definition of Z, Z takes values xi, 1 ≤ i ≤ m with probability αpi, and values
xm+j , 1 ≤ j ≤ n with probability (1− α)qj . Therefore,

H(Z) = −
m∑
i=1

αpi logαpi −
n∑

j=1

(1− α)qj log(1− α)qj

= −
m∑
i=1

αpi logα−
m∑
i=1

αpi log pi −
n∑

j=1

(1− α)qj log(1− α)−
n∑

j=1

(1− α)qj log qj

= αH(X) + (1− α)H(Y )− α logα− (1− α) log(1− α)

Here the last step follows from the observation that
∑m

i=1 pi = 1 and
∑n

j=1 qj = 1.


