CSE 151: Introduction to Machine Learning

Instructor: Kamalika Chaudhuri

Problem Set 3

Spring 2018

Due on: never

Problem 1: 8 points

A group of biologists would like to determine which genes are associated with a certain form of liver cancer.
After much research, they have narrowed the possibilities down to two genes, let us call them A and B. After
analyzing a lot of data, they have also calculated the following joint probabilities.

Cancer | No Cancer Cancer | No Cancer
T T ) 3
Gene A ? ? Gene B § 23—0
No Gene A 5 5 No Gene B i 50

1. Let X denote the 0/1 random variable which is 1 when a patient has cancer and 0 otherwise. Let Y
denote the 0/1 random variable which is 1 when gene A is present, 0 otherwise, and let Z denote the
0/1 random variable which is 1 when gene B is present and 0 otherwise. Write down the conditional
distributions of X|Y =y for y = 0,1 and X|Z = z, for z =0, 1.

2. Calculate the conditional entropies H(X|Y) and H(X|Z).

3. Based on these calculations, which of these genes do you think are more informative about the cancer?

Solutions

1. First, we can compute the marginal distributions of Y and Z as follows,

Then, by definition of conditional probability, i.e. P(X = z|Y =y) =

the conditional distributions of X|Y as follows.
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Similarly we have the conditional distributions of X|Z as follows,

T 0 1
PX=ua[Z=0)] 3z [ 2
RN

P(X = z|Z = 1)

=
f—
=
=

PY =y)

, we can get

2. By the definition of conditional entropy, H(X|Y) = P(Y = 0)H(X|Y =0)+ P(Y = 1)H(X|Y =1).

H(X|Y =0) =

(X =0]Y =0)log P(X =0]Y =0) — P(X = 1]Y = 0)log P(X = 1|Y = 0)
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Similarly we have

HX|Y =1 = —-PX=0Y=1)logP(X=0Y=1)-PX=1Y=1)logP(X =1]Y =1)
1 1 5 5
= T§85 5%
= log67§10g5
Thus
H(X|Y) = P =0HX[Y =0)+P(Y = 1)H(X|Y =1)
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= glogQ + glogG — 510g5
For H(X|Z), we can get
H(X|Z=0) = —P(X=0/Z=0)1ogP(X=0/Z=0)—P(X=1Z=0)logP(X =1|Z=0)
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Similarly we have

HX|Z=1) = —P(X=0[Z=1)logP(X=0[Z=1)-P(X=1|Z=1)log P(X = 1|Z = 1)
3.3 8 8
110871 11 %811

= logll 31 3 81 8
= log 178 17108

Hhus H(X|Z) = P(Z=0)H(X|Z=0)+P(Z=1)H(X|Z=1)
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Using natural logarithm, the numerical values are shown as follows.

H(X]Y =0) | 0.693147180560
H(X[Y =1) | 0.450561208866
H(X[Y) 0.547595597544
H(X|Z=0) | 0.63651416829
H(
H(

X|Z=1) | 0.5859526183
X|2) 0.6087053158

3. From the table above, H(X|Y) < H(X|Z). This suggests that there is less uncertainty in X when
given Y than when given Z. Therefore gene A is more informative about the cancer.

Problem 2: 8 points

Since a decision tree is a classifier, it can be thought of as a function that maps a feature vector z in some
set X to a label y in some set ). We say two decision trees T' and 1" are equal if for all z € X, T(z) = T"(x).



The following are some statements about decision trees. For these statements, assume that X = R¢,
that is, the set of all d-dimensional feature vectors. Also assume that ) = {1,2,...,k}. Write down if each
of these statements are correct or not. If they are correct, provide a brief justification or proof; if they are
incorrect, provide a counterexample to illustrate a case when they are incorrect.

1. If the decision trees T and T” do not have exactly the same structure, then they can never be equal.
2. If T and T" are any two decision trees that produce zero error on the same training set, then they are
equal.

Solutions

1. False.
Counterexample: Consider a classifier for data which uses one feature (called Featurel).

Feature 1 <0.5

Yes / \r\io

Featurel <0.75 ‘ Predict 0 ‘ ‘ Feature 1 < 0.75
Yes‘/ wi Yes / \No
Predict 0 Predict 1 ‘ Predict 0 ‘ ‘ Predict 1 ‘

Figure 1: Two Decision Trees which are equal (see definition in question) but have different structures

2. False.
If T and T" produce zero error on the same training set S C X, then, Vo € S, T(z) = T'(x). However,
the training set typically does not include all elements in feature space X'. Thus, there exist such
xo € X — S that T'(x¢) # T'(x0). For example, consider the following training set:

Feature 1 | Feature 2 | Label
0 0 0
1 1 1

For training set above, the two decision trees shown in Figure 2 both produce zero error. However, for
the point z; = (0,1) or the point x5 = (1,0), these two trees would give different predictions. Hence
they are not equal.

‘ Featurel < 0.57 ‘ ‘ Feature2 < 0.57 ‘

\ Yes No

Yes
Predict 0 ‘ Predict 1 ‘ ‘ Predict 0 ‘ Predict 1

Figure 2: Two Decision Trees with Zero Error on S

Problem 3: 8 points

1. A fair coin (that is, a coin with equal probability of coming up heads and tails) is flipped until the first
head occurs. Let X denote the number of flips required. What is the entropy H(X) of X? You may



find the following expressions useful:

e S
= 1—r = (1—=r)
2. Let X be a discrete random variable which takes values x1,...,x, and let Y be a discrete random
variable which takes values @11, ..., Zm4+n. (That is, the values taken by X and the values taken by
Y are disjoint.) Let:
Z = X with probability «

= Y with probability 1 — «

Find H(Z) as a function of H(X), H(Y) and a.

Solutions
1. Observe that X is a random variable which takes values k = 1,2,3,...,. For a fixed integer k, we need
k flips to get the first head if the first £ — 1 tosses come up tails, and the k-th toss comes up a head.
Therefore,
1 1
pk:Pr(X:k): 2]@71 ~§:2—k
Therefore,
—Zpklogpk=—z log Zlog?
k=1 k=
The last step follows because log 2% = —klog2. From the expressions given above, the sum is:
Z ok Z ok )2 -
k=1 k=0 2

Thus, H(X) = 2log2.

2. Let p; = Pr(X = x;) and let ¢; = Pr(Y = @y4;). Then, H(X) = =37 p;logp; and H(Y) =
— Z?Zl gjlog q;. By definition of Z, Z takes values z;, 1 < ¢ < m with probability ap;, and values
Tm+j, 1 < j < n with probability (1 — a)g;. Therefore,

m n
H(Z) = =Y apilogap; — Y (1 —a)g;log(l - a)g
i=1 j*l
m n
= —Zapzloga - Zozpllogpl Z(l — a)g;jlog(l — a) Z (1 —a)gjlogg;
Jj=1 Jj=1

= aH(X) (1 —a)H(Y) —aloga — (1 — a)log(l — a)

Here the last step follows from the observation that 37" p; = 1 and 37, ¢; = 1.



