
CSE 151: Introduction to Machine Learning Spring 2018

Problem Set 2
Instructor: Kamalika Chaudhuri Due on:

Problem 1 (14 points)
In class, we mentioned that for some applications, it may make sense to do k-nearest neighbors with respect to a
distance other than the usual Euclidean distance. In this problem, we will look at the k-nearest neighbor problem
when the distance between the points is the following modified form of the Euclidean distance. Given two vectors
x = (x1, x2) and z = (z1, z2), the modified distance measure dM (x, z) is defined as:

dM (x, z) =

√
1

2
(x1 − z1)2 + (x2 − z2)2

1. Consider the following labelled training dataset:

((0, 0), 1), ((2, 2), 2), ((4, 0), 3)

First, consider the 1-nearest neighbor classifier on these points with respect to the usual Euclidean distance, and
draw the decision boundary for this classifier. Write down the equations for the different sections (or segments)
of the decision boundary. Clearly mark each region in your drawing with the label assigned by the classifier to a
test example in this region.

2. Now, consider the 1-nearest neighbor classifier on the points in part (1) with respect to the modified Euclidean
distance dM , and in a separate figure, draw the decision boundary for this classifier. Again, write down the
equations for the different segments of the decision boundary, and clearly mark each region in your drawing with
the label assigned by the classifier to a test example in this region.

3. Repeat parts (1) and (2) (namely, drawing the decision boundary with respect to the Euclidean distance and the
modified Euclidean distance dM ) for the following labelled training dataset:

((0, 0), 1), ((1, 1), 1), ((−1, 1), 2)

Solutions
1. Finding the decision boundaries is essentially figuring out which test points have each training point as their nearest

neighbor. Taking the training point (0, 0) as an example. The test points with (1, 1) as the nearest neighbor
are exactly the intersection of solutions for the inequalities: d(x, (0, 0)) ≤ d(x, (2, 2)) and d(x, (0, 0)) ≤
d(x, (4, 0)).

Using the regular Euclidean distance, these inequalities can be simplified to linear inequalities. d(x, (0, 0)) ≤
d(x, (2, 2)) gives

(x1 − 0)2 + (x2 − 0)2 ≤ (x1 − 2)2 + (x2 − 2)2

0.5x1 + 0.5x2 − 1 ≤ 0

The solutions to this linear inequality form a half-plane, with the boundary line given by 0.5x1 + 0.5x2 − 1 = 0.
This is the equidistance line between (0, 0) and (2, 2).

Similarly, d(x, (0, 0)) ≤ d(x, (4, 0)) gives the half-plane

(x1 − 0)2 + (x2 − 0)2 ≤ (x1 − 4)2 + (x2 − 0)2

0.5x1 − 1 ≤ 0.



The intersection of these two half-planes is the region for which (0, 0) is the nearest neighbor.

Similarly, d(x, (2, 2)) ≤ d(x, (4, 0)) gives the half-plane

(x1 − 2)2 + (x2 − 2)2 ≤ (x1 − 4)2 + (x2 − 0)2

0.5x1 − 0.5x2 − 1 ≤ 0.

The intersection of these two half-planes is the region for which (2, 2) is the nearest neighbor.

To do this efficiently for all training points, we simply solve each of d(x, (0, 0)) = d(x, (2, 2)), d(x, (0, 0)) =
d(x, (4, 0)) and d(x, (2, 2)) = d(x, (4, 0)). This gives the boundary lines, and thus the half-planes. The
intersection of the proper half-planes gives us the "cell" corresponding to each training point, and also the
decision boundaries.

The decision boundaries are shown in Figure 1.

Figure 1: Decision boundary using the regular Euclidean distance. Green, white and red spaces show the area for which (0,0), (2,2) and (4,0) are respectively the nearest
neighbours.

2. Repeat the procedure above with the modified Euclidean distance. For example, dM (x, (0, 0)) = dM (x, (2, 2))
gives the boundary line,

1

2
(x1 − 0)2 + (x2 − 0)2 =

1

2
(x1 − 2)2 + (x2 − 2)2

x1 + 2x2 − 3 = 0

dM (x, (0, 0)) = dM (x, (4, 0)) gives the boundary line,

1

2
(x1 − 0)2 + (x2 − 0)2 =

1

2
(x1 − 4)2 + (x2 − 0)2

x1 − 2 = 0

dM (x, (2, 2)) = dM (x, (4, 0)) gives the boundary line,

1

2
(x1 − 2)2 + (x2 − 2)2 =

1

2
(x1 − 4)2 + (x2 − 0)2

x1 − 2x2 − 1 = 0



Figure 2: Decision boundary using the modified Euclidean distance. Green, white and red spaces show the area for which (0,0), (2,2) and (4,0) are respectively the
nearest neighbours.

After all boundary lines are computed, the region associated with each training point and the decision boundaries
can be obtained.

An alternative method can be found by writing the modified Euclidean distance as,

dM (x, z) =

√(
x1√
2
− z1√

2

)2

+ (x2 − z2)2.

This is the usual Euclidean distance on a space with the x-axis scaled by 1/
√
2. Therefore a procedure to find the

decision boundaries using this distance function is:

Step 1: converting a point x = (x1, x2) to x′ =
(

x1√
2
, x2

)
, i.e. scaling the x-axis by 1/

√
2,

Step 2: drawing the decision boundaries on this x-scaled space, using the usual Euclidean distance,

Step 3: scaling the x-axis back to the original scale.

3. Note that there are only two labels in this question! (not three, like previous problem)
The decision boundaries using the regular Euclidean distance are shown in Figure 3.

dM (x, (0, 0)) = dM (x, (1, 1)) gives the boundary line,

(x1 − 0)2 + (x2 − 0)2 = (x1 − 1)2 + (x2 − 1)2

x1 + x2 − 1 = 0

dM (x, (0, 0)) = dM (x, (−1, 1)) gives the boundary line,

(x1 − 0)2 + (x2 − 0)2 = (x1 + 1)2 + (x2 − 1)2

x1 − x2 + 1 = 0

dM (x, (1, 1)) = dM (x, (−1, 1)) gives the boundary line,

(x1 − 1)2 + (x2 − 1)2 = (x1 + 1)2 + (x2 − 1)2

x1 = 0



Figure 3: Decision boundary using the regular Euclidean distance. Red and green spaces show the area for which the labels are 1 and 2 respectively. The lines show the
NN-boundary between the three points.

The decision boundaries using the modified Euclidean distance are shown in Figure 4.
dM (x, (0, 0)) = dM (x, (1, 1)) gives the boundary line,

1

2
(x1 − 0)2 + (x2 − 0)2 =

1

2
(x1 − 1)2 + (x2 − 1)2

x1 + 2x2 − 1.5 = 0

dM (x, (0, 0)) = dM (x, (−1, 1)) gives the boundary line,

1

2
(x1 − 0)2 + (x2 − 0)2 =

1

2
(x1 + 1)2 + (x2 − 1)2

x1 − 2x2 + 1.5 = 0

dM (x, (1, 1)) = dM (x, (−1, 1)) gives the boundary line,

1

2
(x1 − 1)2 + (x2 − 1)2 =

1

2
(x1 + 1)2 + (x2 − 1)2

x1 = 0

Problem 2 (6 points)
In class, we talked about how k-nearest neighbor classifiers are robust to errors or noise in the data when k > 1. In this
problem, we will look more closely at how exactly this error correction happens.

Suppose that we have two labels 0 and 1. Suppose we are given any k, and any test point x; let z1, . . . , zk be the k
closest neighbors of x in the training data. For the rest of the question, we make the assumption that for all i = 1, . . . , k,
the probability that the label of zi is not equal to the label of x is p = 0.2; moreover, for i 6= j, the events that the label
of zi is not equal to the label of x and the label of zj is not equal to the label of x are independent. In reality of course,
this assumption will not hold for very large k, but for small k, this is a fairly reasonable assumption to make.

1. What is the probability that the 1-nearest neighbor classifier makes a mistake on x?

2. Now calculate the probability that 3-nearest neighbor classifier and the 5-nearest neighbor classifier make a
mistake on x. What can you conclude from these calculations about the robustness of these classifiers?



Figure 4: Decision boundary using the modified Euclidean distance. Red and green spaces show the area for which the labels are 1 and 2 respectively. The lines show
the NN-boundary between the three points.

Solutions
For a test point x, a k-nearest neighbor classifier will give the incorrect label if and only if the majority (formally, at least
dk/2e, where dk/2emeans the smallest integer larger than k/2) of x’s k closest neighbors, z1, · · · , zk, have the incorrect
label. Since each of these k neighbors has the same probability p = 0.2 of having an incorrect label, the probability

that exactly n of the k neighbors have the incorrect label, P{exactly n neighbors incorrect} =
(
k

n

)
pn(1 − p)k−n.

The probability that at least dk/2e neighbors have the incorrect label, or in other words, the probability that a k-NN
classifier makes a mistake is,

P{k-NN mistake} =
k∑

n=dk/2e

P{exactly n neighbors incorrect} =
k∑

n=dk/2e

(
k

n

)
pn(1− p)k−n.

1. P{1−NN mistake} = P{exactly 1 neighbors incorrect} = 0.2

2.

P{3-NN mistake}
=P{exactly 3 neighbors incorrect}+ P{exactly 2 neighbors incorrect}

=0.23 +

(
3

2

)
0.22 × 0.8 = 0.104

P{5-NN mistake}
=P{exactly 5 neighbors incorrect}+ P{exactly 4 neighbors incorrect}+ P{exactly 3 neighbors incorrect}

=0.25 +

(
5

4

)
0.24 × 0.8 +

(
5

3

)
0.23 × 0.82 = 0.05792

Therefore, 5-NN classfier is more robust than both 1-NN and 3-NN classifiers.


