Problem 1 (10 points)

Let u_{1} and u_{2} be vectors such that $\left\|u_{1}\right\|=\left\|u_{2}\right\|=1$, and $\left\langle u_{1}, u_{2}\right\rangle=0$. For any vector x, we define $P(x)$ as the vector $P(x)=\left\langle x, u_{1}\right\rangle u_{1}+\left\langle x, u_{2}\right\rangle u_{2}$.

1. How would you geometrically interpret $P(x)$? (Hint: Think about projections)
2. Show that: $\|P(x)\|^{2}=\left\langle x, u_{1}\right\rangle^{2}+\left\langle x, u_{2}\right\rangle^{2}$.
3. Using parts (1) and (2), show that $\|P(x)\| \leq\|x\|$. When is $\|P(x)\|=\|x\|$?

Solutions

1. $P(x)$ is the projection of x onto the subspace spanned by u_{1} and u_{2}.

Let V be the subspace spanned by u_{1} and $u_{2} . P(x)$ is the projection of x onto subspace V if $x-P(x)$ is orthogonal to V. We first show that $x-P(x) \perp u_{1}$ and $x-P(x) \perp u_{2}$.

$$
\begin{aligned}
\left\langle x-P(x), u_{1}\right\rangle & =\left\langle x-\left\langle x, u_{1}\right\rangle u_{1}-\left\langle x, u_{2}\right\rangle u_{2}, u_{1}\right\rangle \\
& =\left\langle x, u_{1}\right\rangle-\left\langle\left\langle x, u_{1}\right\rangle u_{1}, u_{1}\right\rangle-\left\langle\left\langle x, u_{2}\right\rangle u_{2}, u_{1}\right\rangle \\
& =\left\langle x, u_{1}\right\rangle-\left\langle x, u_{1}\right\rangle\left\langle u_{1}, u_{1}\right\rangle-\left\langle x, u_{2}\right\rangle\left\langle u_{2}, u_{1}\right\rangle \\
& =\left\langle x, u_{1}\right\rangle-\left\langle x, u_{1}\right\rangle \cdot 1-\left\langle x, u_{2}\right\rangle \cdot 0 \\
& =0, \\
\left\langle x-P(x), u_{2}\right\rangle & =\left\langle x-\left\langle x, u_{1}\right\rangle u_{1}-\left\langle x, u_{2}\right\rangle u_{2}, u_{2}\right\rangle \\
& =\left\langle x, u_{2}\right\rangle-\left\langle\left\langle x, u_{1}\right\rangle u_{1}, u_{2}\right\rangle-\left\langle\left\langle x, u_{2}\right\rangle u_{2}, u_{2}\right\rangle \\
& =\left\langle x, u_{2}\right\rangle-\left\langle x, u_{1}\right\rangle\left\langle u_{1}, u_{2}\right\rangle-\left\langle x, u_{2}\right\rangle\left\langle u_{2}, u_{2}\right\rangle \\
& =\left\langle x, u_{2}\right\rangle-\left\langle x, u_{1}\right\rangle \cdot 0-\left\langle x, u_{2}\right\rangle \cdot 1 \\
& =0 .
\end{aligned}
$$

Since $x-P(x) \perp u_{1}, x-P(x) \perp u_{2}$ and u_{1}, u_{2} are linearly independent, $x-P(x)$ is orthogonal to any vector in subspace V, which means that $x-P(x)$ is orthogonal to V. Therefore, $P(x)$ is the projection of x onto the subspace spanned by u_{1} and u_{2}.

Figure 1: Visualization of $P(x)$, when $x, u_{1}, u_{2} \in \mathbb{R}^{3}$
2. We show $\|P(x)\|^{2}=\left\langle x, u_{1}\right\rangle^{2}+\left\langle x, u_{2}\right\rangle^{2}$ by expanding $\|P(x)\|^{2}$.

$$
\begin{aligned}
\|P(x)\|^{2} & =\langle P(x), P(x)\rangle \\
& =\left\langle\left\langle x, u_{1}\right\rangle u_{1}+\left\langle x, u_{2}\right\rangle u_{2},\left\langle x, u_{1}\right\rangle u_{1}+\left\langle x, u_{2}\right\rangle u_{2}\right\rangle \\
& =\left\langle\left\langle x, u_{1}\right\rangle u_{1},\left\langle x, u_{1}\right\rangle u_{1}\right\rangle+\left\langle\left\langle x, u_{1}\right\rangle u_{1},\left\langle x, u_{2}\right\rangle u_{2}\right\rangle+\left\langle\left\langle x, u_{2}\right\rangle u_{2},\left\langle x, u_{1}\right\rangle u_{1}\right\rangle+\left\langle\left\langle x, u_{2}\right\rangle u_{2},\left\langle x, u_{2}\right\rangle u_{2}\right\rangle \\
& =\left\langle x, u_{1}\right\rangle^{2}\left\langle u_{1}, u_{1}\right\rangle+\left\langle x, u_{1}\right\rangle\left\langle x, u_{2}\right\rangle\left\langle u_{1}, u_{2}\right\rangle+\left\langle x, u_{2}\right\rangle\left\langle x, u_{1}\right\rangle\left\langle u_{2}, u_{1}\right\rangle+\left\langle x, u_{2}\right\rangle^{2}\left\langle u_{2}, u_{2}\right\rangle \\
& =\left\langle x, u_{1}\right\rangle^{2} \cdot 1+\left\langle x, u_{1}\right\rangle\left\langle x, u_{2}\right\rangle \cdot 0+\left\langle x, u_{2}\right\rangle\left\langle x, u_{1}\right\rangle \cdot 0+\left\langle x, u_{2}\right\rangle^{2} \cdot 1 \\
& =\left\langle x, u_{1}\right\rangle^{2}+\left\langle x, u_{2}\right\rangle^{2}
\end{aligned}
$$

3. Since $P(x) \perp x-P(x)$, we have $\|x\|^{2}=\|P(x)\|^{2}+\|x-P(x)\|^{2}$. Or, from part (1), we have $\left\langle u_{1}, x-P(x)\right\rangle=0$ and $\left\langle u_{2}, x-P(x)\right\rangle=0$, thus

$$
\begin{aligned}
\|x\|^{2} & =\langle x, x\rangle \\
& =\langle P(x)+(x-P(x)), P(x)+(x-P(x))\rangle \\
& =\langle P(x), P(x)\rangle+\langle P(x), x-P(x)\rangle+\langle x-P(x), P(x)\rangle+\langle x-P(x), x-P(x)\rangle \\
& =\|P(x)\|^{2}+2\langle P(x), x-P(x)\rangle+\|x-P(x)\|^{2} \\
& =\|P(x)\|^{2}+2\left(\left\langle\left\langle x, u_{1}\right\rangle u_{1}+\left\langle x, u_{2}\right\rangle u_{2}, x-P(x)\right\rangle\right)+\|x-P(x)\|^{2} \\
& =\|P(x)\|^{2}+2\left(\left\langle\left\langle x, u_{1}\right\rangle u_{1}, x-P(x)\right\rangle+\left\langle\left\langle x, u_{2}\right\rangle u_{2}, x-P(x)\right\rangle\right)+\|x-P(x)\|^{2} \\
& =\|P(x)\|^{2}+2\left(\left\langle x, u_{1}\right\rangle\left\langle u_{1}, x-P(x)\right\rangle+\left\langle x, u_{2}\right\rangle\left\langle u_{2}, x-P(x)\right\rangle\right)+\|x-P(x)\|^{2} \\
& =\|P(x)\|^{2}+2\left(\left\langle x, u_{1}\right\rangle \cdot 0+\left\langle x, u_{2}\right\rangle \cdot 0\right)+\|x-P(x)\|^{2} \\
& =\|P(x)\|^{2}+\|x-P(x)\|^{2} .
\end{aligned}
$$

Therefore, $\|P(x)\|^{2} \leq\|x\|^{2}$. Since $\|P(x)\| \geq 0$ and $\|x\| \geq 0$, we have $\|P(x)\| \leq\|x\|$.
When $\|x-P(x)\|^{2}=0$, i.e. $x=P(x)$ or x itself is in the subspace spanned by u_{1} and u_{2}, we have $\|P(x)\|=\|x\|$.

Problem 2 (10 points)

Given two column vectors x and y in d-dimensional space, the outer product of x and y is defined to be the $d \times d$ matrix $x \circ y=x y^{\top}$.

1. Show that for any x and $y, x^{\top}(x \circ y) y=\|x\|^{2}\|y\|^{2}$. When is this equal to $x^{\top}\langle x, y\rangle y$?
2. Show that for any non-zero x and y, the outer product $x \circ y$ always has rank 1 .
3. Let x_{1}, \ldots, x_{n} be $n d \times 1$ data vectors, and let X be the $n \times d$ data matrix whose i-th row is the row vector x_{i}^{\top}. Show that:

$$
X^{\top} X=\sum_{i=1}^{n} x_{i} \circ x_{i}
$$

Solutions

We know that for any vector $x, x^{\top} x=\|x\|^{2}$. Thus,

$$
x^{\top}(x \circ y) y=x^{\top}\left(x y^{\top}\right) y=\left(x^{\top} x\right)\left(y^{\top} y\right)=\|x\|^{2}\|y\|^{2}
$$

Also, $x^{\top}\langle x, y\rangle y=\langle x, y\rangle\left(x^{\top} y\right)=\langle x, y\rangle\langle x, y\rangle=\langle x, y\rangle^{2}=(\|x\|\|y\| \cos \theta)^{2}=\|x\|^{2}\|y\|^{2} \cos ^{2} \theta$. This quantity is equal to $\|x\|^{2}\|y\|^{2}$ when $\theta=0^{\circ}$ or 180°. This means that the two quantities are equal when the vectors x and y are collinear.

Let x_{i} be the i th element of vector x and y_{i} be the i th element of vector y. Thus,

$$
x \circ y=x y^{\top}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]\left[y_{1}, y_{2}, \cdots, y_{d}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{d} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{d} \\
\vdots & \vdots & & \vdots \\
x_{d} y_{1} & x_{d} y_{2} & \cdots & x_{d} y_{d}
\end{array}\right]
$$

Notice that every row is a scalar multiple of the first row of the above matrix. Therefore, when this matrix is reduced to a row echelon form, it will contain only one non-zero row. Therefore, the outer product $x \circ y$ always has rank 1 .

Let $Y=X^{\top} X$. Therefore, Y is a $d \times d$ matrix. Let $x_{i j}$ be the j th element of vector x_{i}. Therefore, X can be written as

$$
X=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 d} \\
x_{21} & x_{22} & \cdots & x_{2 d} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n d}
\end{array}\right]
$$

Therefore,

$$
Y=X^{T} X=\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{n 1} \\
x_{12} & x_{22} & \cdots & x_{n 2} \\
\vdots & \vdots & & \vdots \\
x_{1 d} & x_{2 d} & \cdots & x_{n d}
\end{array}\right]\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 d} \\
x_{21} & x_{22} & \cdots & x_{2 d} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n d}
\end{array}\right]=
$$

This works out to give $Y_{i j}=\sum_{k=1}^{n} x_{k i} x_{k j}$ where $i, j=1,2 \ldots d$. Now we work out the right side of the equation.

$$
\sum_{k=1}^{n} x_{k} \circ x_{k}=\sum_{k=1}^{n} x_{k} x_{k}^{\top}=\sum_{k=1}^{n}\left[\begin{array}{c}
x_{k 1} \\
x_{k 2} \\
\vdots \\
x_{k d}
\end{array}\right]\left[x_{k 1}, x_{k 2} \cdots x_{k d}\right]=\sum_{k=1}^{n}\left[\begin{array}{cccc}
x_{k 1}^{2} & x_{k 1} x_{k 2} & \cdots & x_{k 1} x_{k d} \\
x_{k 2} x_{k 1} & x_{k 2}^{2} & \cdots & x_{k 2} x_{k d} \\
\vdots & \vdots & \vdots \\
x_{k d} x_{k 1} & x_{k d} x_{k 2} & \cdots & x_{k d}^{2}
\end{array}\right]
$$

Thus, the right side of the equation equals Y.

Problem 3 (10 points)

Suppose A and B are $d \times d$ matrices which are symmetric (in the sense that $A_{i j}=A_{j i}$ and $B_{i j}=B_{j i}$ for all i and j) and positive semi-definite. Also suppose that u is a $d \times 1$ vector such that $\|u\|=1$. Which of the following matrices are always positive semi-definite, no matter what A, B and u are? Justify your answer.

1. 10 A .
2. $A+B$.
3. $u u^{\top}$.
4. $A-B$.
5. $I-u u^{\top}$ (Hint: Write down $x^{\top}\left(I-u u^{\top}\right) x$ in terms of some dot-products, and try usng CauchySchwartz.)

Solutions

A general strategy for solving this problem is to first try to prove that the matrix M is positive semi-definite; if you fail, then try to find a counter-example to disprove the claim. For the latter, you need find out a specific vector x for which $x^{\top} M x<0$.
By the definition of positive semi-definite matrices, for all $d \times 1$ vector x,

$$
x^{\top} A x \geq 0, x^{\top} B x \geq 0
$$

1. For the matrix $10 A$, for all $d \times 1$ vector x,

$$
x^{\top}(10 A) x=10\left(x^{\top} A x\right) \geq 0
$$

thus it is positive semidefinite.
2. For the matrix $A+B$, for all $d \times 1$ vector x,

$$
x^{\top}(A+B) x=\left(x^{\top} A x\right)+\left(x^{\top} B x\right) \geq 0
$$

as both $x^{\top} A x$ and $x^{\top} B x$ are ≥ 0. Thus it is positive semidefinite.
3. For the matrix $u u^{\top}$, for all $d \times 1$ vector x,

$$
x^{\top}\left(u u^{\top}\right) x=\left(x^{\top} u\right)\left(u^{\top} x\right)=(\langle x, u\rangle)(\langle u, x\rangle)=(\langle x, u\rangle)^{2} \geq 0
$$

thus it is positive semidefinite.
4. The matrix $A-B$ is not always positive semi-definite. As a concrete counter-example, take $d=2$, $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. Then $A-B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$. There exists a 2×1 vector $x=[1,0]^{\top}$ such that

$$
x^{\top}(A-B) x=-1
$$

which proves that $A-B$ is in fact not positive semi-definite.
5. For the matrix $I-u u^{\top}$, for all $d \times 1$ vector x,

$$
x^{\top}\left(I-u u^{\top}\right) x=x^{\top} x-(\langle x, u\rangle)^{2}
$$

Now applying Cauchy-Schwarz to $(\langle x, u\rangle)$ and using the fact that $\|u\|=1$, we find that

$$
(\langle x, u\rangle)^{2} \leq\|x\|^{2}\|u\|^{2}=\|x\|^{2}=x^{\top} x
$$

Thus, we conclude

$$
x^{\top}\left(I-u u^{\top}\right) x \geq 0
$$

This establishes the fact that $\left(I-u u^{\top}\right)$ is positive semi-definite.

Problem 4 (10 points)

In class, we discussed how to define a norm or a length for a vector. It turns out that one can also define a norm or a length for a matrix. Two popular matrix norms are the Frobenius norm and the spectral norm. The Frobenius norm of a $m \times n$ matrix A, denoted by $\|A\|_{F}$ is defined as:

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}
$$

The spectral norm of a $m \times n$ matrix A, denoted by $\|A\|$ is defined as:

$$
\|A\|=\max _{x} \frac{\|A x\|}{\|x\|}
$$

where x is a $n \times 1$ vector.

1. Let I be the $n \times n$ identity matrix. What is its Frobenius norm? What is its spectral norm? Justify your answer.
2. Suppose $A=u v^{\top}$ where u is a $m \times 1$ vector and v is a $n \times 1$ vector. Write down the Frobenius norm of A as function of $\|u\|$ and $\|v\|$. Justify your answer.
3. Write down the spectral norm of A in terms of $\|u\|$ and $\|v\|$. Justify your answer.

Solutions

Since I is an $n \times n$ identity matrix, therefore it has n elements along the diagonal which are 1 and all the remaining elements are 0 . Therefore, the Frobenius norm of I is given by

$$
\|I\|_{F}=\sqrt{n}
$$

The spectral norm of I is given by

$$
\|I\|=\max _{x} \frac{\|I x\|}{\|x\|}=\max _{x} \frac{\|x\|}{\|x\|}=1
$$

Let $u=\left[u_{1}, u_{2} \ldots u_{m}\right]^{\top}$ and $v=\left[v_{1}, v_{2} \ldots v_{n}\right]^{\top}$. Since $A=u v^{\top}$, therefore

$$
A=\left[\begin{array}{cccc}
u_{1} v_{1} & u_{1} v_{2} & \cdots & u_{1} v_{n} \\
u_{2} v_{1} & u_{2} v_{2} & \cdots & u_{2} v_{n} \\
\vdots & \vdots & & \vdots \\
u_{m} v_{1} & u_{m} v_{2} & \cdots & u_{m} v_{n}
\end{array}\right]
$$

The Frobenius norm of A is given by

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} u_{i}^{2} v_{j}^{2}}=\sqrt{\sum_{i=1}^{m} u_{i}^{2} \sum_{j=1}^{n} v_{j}^{2}}=\sqrt{\|u\|^{2}\|v\|^{2}}=\|u\|\|v\|
$$

In order to find the spectral norm of A, observe that for any $n \times 1 x$,

$$
\|A x\|=\|u\langle v, x\rangle\|=\|u\||\langle v, x\rangle|=\|u\|\|v\|\|x\||\cos \theta|
$$

where θ is the angle between v and x.
$|\cos \theta|$ attains a maximum value of 1 at $\theta=0$ or 180 . Therefore, $\|A\|=\|u\|\|v\|$.

Problem 5 (10 points)

Let x be a $d \times 1$ vector. Let y_{i} be constants, z_{i} be $d \times 1$ constant vectors, and β_{i} be $d \times 1$ constant vectors for $1 \leq i \leq n$. Write down the gradients for each of the following multivariate functions with respect to x. Given the other parameters describing the function, what is the time required to compute the gradient at a specific value of x ?

1. $F(x)=\sum_{i=1}^{n} \log \left(1+e^{-y_{i} x^{\top} z_{i}}\right)$.
2. $G(x)=\sum_{i=1}^{n}\left(x^{\top} \beta_{i}-y_{i}\right)^{2}$.
3. $H(x)=\sum_{i=1}^{d} x_{i} \log \frac{1}{x_{i}}$.
4. $J(x)=\log \left(\sum_{i=1}^{d} e^{2 x_{i}}\right)$.

Solutions

1. We use a special case of the multivariate chain rule: if $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$, then $\frac{\partial}{\partial x_{j}} f(g(x))=$ $\frac{\partial}{\partial x_{j}} g(x) \frac{\partial}{\partial g(x)} f(g(x))$. Differentiating $F(x)$ with respect to x_{j}, we have

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}} F(x) & =\sum_{i=1}^{n} \frac{\partial}{\partial x_{j}} \log \left(1+e^{-y_{i} x^{\top} z_{i}}\right) \\
& =\sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{j}}\left(1+e^{-y_{i} x^{\top} z_{i}}\right)\right) \frac{1}{1+e^{-y_{i} x^{\top} z_{i}}}
\end{aligned}
$$

Now, we know

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}}\left(1+e^{-y_{i} x^{\top} z_{i}}\right) & =\frac{\partial}{\partial x_{j}} e^{-y_{i} x^{\top} z_{i}} \\
& =\left(\frac{\partial}{\partial x_{j}}\left(-y_{i} x^{\top} z_{i}\right)\right)\left(e^{-y_{i} x^{\top} z_{i}}\right) \\
& =\left(-y_{i}\left(z_{i}\right)_{j}\right)\left(e^{-y_{i} x^{\top} z_{i}}\right)
\end{aligned}
$$

where $\left(z_{i}\right)_{j}$ is the j th element of z_{i}. Thus, the answer is

$$
\frac{\partial}{\partial x_{j}} F(x)=\sum_{i=1}^{n} \frac{-\left(z_{i}\right)_{j} y_{i} e^{-y_{i} x^{\top} z_{i}}}{1+e^{-y_{i} x^{\top} z_{i}}}
$$

We can compute the gradient of F as follows: first, store $x^{\top} z_{i}$ for $1 \leq i \leq n$, taking $O(n d)$ operations. Then, compute $\frac{\partial}{\partial x_{j}} F(x)$ for $1 \leq j \leq d$, taking $O(n)$ operations for each j. This takes $O(n d)+O(n d)=$ $O(n d)$ operations in total.
2. Differentiating $G(x)$ with respect to x_{j}, we have

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}} G(x) & =\sum_{i=1}^{n} \frac{\partial}{\partial x_{j}}\left(x^{\top} \beta_{i}-y_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{j}}\left(x^{\top} \beta_{i}-y_{i}\right)\right) 2\left(x^{\top} \beta_{i}-y_{i}\right) \\
& =\sum_{i=1}^{n} 2\left(\beta_{i}\right)_{j}\left(x^{\top} \beta_{i}-y_{i}\right)
\end{aligned}
$$

where $\left(\beta_{i}\right)_{j}$ is the j th element of β_{i}. We can compute the gradient of G as follows: first, store $x^{\top} \beta_{i}$ for $1 \leq i \leq n$, taking $O(n d)$ operations. Then, compute $\frac{\partial}{\partial x_{j}} G(x)$ for $1 \leq j \leq d$, taking $O(n)$ operations for each j. This takes $O(n d)+O(n d)=O(n d)$ operations in total.
3. Differentiating $H(x)$ with respect to x_{j}, we have

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}} H(x) & =\sum_{i=1}^{d} \frac{\partial}{\partial x_{j}}\left(x_{i} \log \frac{1}{x_{i}}\right) \\
& =\frac{\partial}{\partial x_{j}}\left(x_{j} \log \frac{1}{x_{j}}\right) .
\end{aligned}
$$

This is because $\frac{\partial}{\partial x_{j}}\left(x_{i} \log \frac{1}{x_{i}}\right)=0$ for $i \neq j$. Finally,

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}}\left(x_{j} \log \frac{1}{x_{j}}\right) & =\log \frac{1}{x_{j}}+x_{j}\left(\frac{1}{1 / x_{j}}\right)\left(-\frac{1}{x_{j}^{2}}\right) \\
& =\log \frac{1}{x_{j}}-1
\end{aligned}
$$

We can compute $\frac{\partial}{\partial x_{j}} H(x)$ for each $1 \leq j \leq d$ in $O(1)$ time, resulting in $O(d)$ total operations.
4. Differentiating $J(x)$ with respect to x_{j}, we have

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}} J(x) & =\left(\frac{\partial}{\partial x_{j}} \sum_{i=1}^{d} e^{2 x_{i}}\right) \frac{1}{\sum_{i=1}^{d} e^{2 x_{i}}} \\
& =\left(\frac{\partial}{\partial x_{j}} e^{2 x_{j}}\right) \frac{1}{\sum_{i=1}^{d} e^{2 x_{i}}}
\end{aligned}
$$

This is because $\frac{\partial}{\partial x_{j}} e^{2 x_{i}}=0$ for $i \neq j$. Finally,

$$
\frac{\partial}{\partial x_{j}} e^{2 x_{j}}=2 e^{2 x_{j}}
$$

Thus,

$$
\frac{\partial}{\partial x_{j}} J(x)=\frac{2 e^{2 x_{j}}}{\sum_{i=1}^{d} e^{2 x_{i}}}
$$

We can compute $\frac{\partial}{\partial x_{j}}$ for $1 \leq j \leq d$ by storing $\sum_{i=1}^{d} e^{2 x_{i}}$, using $O(d)$ operations. Computing $\frac{\partial}{\partial x_{j}}$ for a particular j takes $O(1)$ operations, and thus the total number of operations is $O(d)+O(d)=O(d)$.

