
CSE 151: Introduction to Machine Learning Winter 2021

Problem Set 1
Instructor: Kamalika Chaudhuri Due on: never

Problem 1 (10 points)
Let u1 and u2 be vectors such that ‖u1‖ = ‖u2‖ = 1, and 〈u1, u2〉 = 0. For any vector x, we define P (x) as
the vector P (x) = 〈x, u1〉u1 + 〈x, u2〉u2.

1. How would you geometrically interpret P (x)? (Hint: Think about projections)

2. Show that: ‖P (x)‖2 = 〈x, u1〉2 + 〈x, u2〉2.

3. Using parts (1) and (2), show that ‖P (x)‖ ≤ ‖x‖. When is ‖P (x)‖ = ‖x‖?

Solutions
1. P (x) is the projection of x onto the subspace spanned by u1 and u2.

Let V be the subspace spanned by u1 and u2. P (x) is the projection of x onto subspace V if x−P (x)
is orthogonal to V . We first show that x− P (x) ⊥ u1 and x− P (x) ⊥ u2.

〈x− P (x), u1〉 = 〈x− 〈x, u1〉u1 − 〈x, u2〉u2, u1〉
= 〈x, u1〉 − 〈〈x, u1〉u1, u1〉 − 〈〈x, u2〉u2, u1〉
= 〈x, u1〉 − 〈x, u1〉〈u1, u1〉 − 〈x, u2〉〈u2, u1〉
= 〈x, u1〉 − 〈x, u1〉 · 1− 〈x, u2〉 · 0
= 0,

〈x− P (x), u2〉 = 〈x− 〈x, u1〉u1 − 〈x, u2〉u2, u2〉
= 〈x, u2〉 − 〈〈x, u1〉u1, u2〉 − 〈〈x, u2〉u2, u2〉
= 〈x, u2〉 − 〈x, u1〉〈u1, u2〉 − 〈x, u2〉〈u2, u2〉
= 〈x, u2〉 − 〈x, u1〉 · 0− 〈x, u2〉 · 1
= 0.

Since x−P (x) ⊥ u1, x−P (x) ⊥ u2 and u1, u2 are linearly independent, x−P (x) is orthogonal to any
vector in subspace V , which means that x−P (x) is orthogonal to V . Therefore, P (x) is the projection
of x onto the subspace spanned by u1 and u2.

Figure 1: Visualization of P (x), when x, u1, u2 ∈ R3



2. We show ‖P (x)‖2 = 〈x, u1〉2 + 〈x, u2〉2 by expanding ‖P (x)‖2.

‖P (x)‖2 = 〈P (x), P (x)〉
= 〈〈x, u1〉u1 + 〈x, u2〉u2, 〈x, u1〉u1 + 〈x, u2〉u2〉
= 〈〈x, u1〉u1, 〈x, u1〉u1〉+ 〈〈x, u1〉u1, 〈x, u2〉u2〉+ 〈〈x, u2〉u2, 〈x, u1〉u1〉+ 〈〈x, u2〉u2, 〈x, u2〉u2〉
= 〈x, u1〉2〈u1, u1〉+ 〈x, u1〉〈x, u2〉〈u1, u2〉+ 〈x, u2〉〈x, u1〉〈u2, u1〉+ 〈x, u2〉2〈u2, u2〉
= 〈x, u1〉2 · 1 + 〈x, u1〉〈x, u2〉 · 0 + 〈x, u2〉〈x, u1〉 · 0 + 〈x, u2〉2 · 1
= 〈x, u1〉2 + 〈x, u2〉2

3. Since P (x) ⊥ x − P (x), we have ‖x‖2 = ‖P (x)‖2 + ‖x − P (x)‖2. Or, from part (1), we have
〈u1, x− P (x)〉 = 0 and 〈u2, x− P (x)〉 = 0, thus

‖x‖2 = 〈x, x〉
= 〈P (x) + (x− P (x)), P (x) + (x− P (x))〉
= 〈P (x), P (x)〉+ 〈P (x), x− P (x)〉+ 〈x− P (x), P (x)〉+ 〈x− P (x), x− P (x)〉
= ‖P (x)‖2 + 2〈P (x), x− P (x)〉+ ‖x− P (x)‖2

= ‖P (x)‖2 + 2(〈〈x, u1〉u1 + 〈x, u2〉u2, x− P (x)〉) + ‖x− P (x)‖2

= ‖P (x)‖2 + 2(〈〈x, u1〉u1, x− P (x)〉+ 〈〈x, u2〉u2, x− P (x)〉) + ‖x− P (x)‖2

= ‖P (x)‖2 + 2(〈x, u1〉〈u1, x− P (x)〉+ 〈x, u2〉〈u2, x− P (x)〉) + ‖x− P (x)‖2

= ‖P (x)‖2 + 2(〈x, u1〉 · 0 + 〈x, u2〉 · 0) + ‖x− P (x)‖2

= ‖P (x)‖2 + ‖x− P (x)‖2.

Therefore, ‖P (x)‖2 ≤ ‖x‖2. Since ‖P (x)‖ ≥ 0 and ‖x‖ ≥ 0, we have ‖P (x)‖ ≤ ‖x‖.
When ‖x − P (x)‖2 = 0, i.e. x = P (x) or x itself is in the subspace spanned by u1 and u2, we have
‖P (x)‖ = ‖x‖.

Problem 2 (10 points)
Given two column vectors x and y in d-dimensional space, the outer product of x and y is defined to be the
d× d matrix x ◦ y = xy>.

1. Show that for any x and y, x>(x ◦ y)y = ‖x‖2‖y‖2. When is this equal to x>〈x, y〉y?

2. Show that for any non-zero x and y, the outer product x ◦ y always has rank 1.

3. Let x1, . . . , xn be n d× 1 data vectors, and let X be the n× d data matrix whose i-th row is the row
vector x>i . Show that:

X>X =

n∑
i=1

xi ◦ xi

Solutions
We know that for any vector x, x>x = ‖x‖2. Thus,

x>(x ◦ y)y = x>(xy>)y = (x>x)(y>y) = ‖x‖2‖y‖2

Also, x>〈x, y〉y = 〈x, y〉(x>y) = 〈x, y〉〈x, y〉 = 〈x, y〉2 = (‖x‖‖y‖ cos θ)2 = ‖x‖2‖y‖2 cos2 θ. This quantity is
equal to ‖x‖2‖y‖2 when θ = 0◦ or 180◦. This means that the two quantities are equal when the vectors x
and y are collinear.



Let xi be the ith element of vector x and yi be the ith element of vector y. Thus,

x ◦ y = xy> =


x1
x2
...
xd

 [y1, y2, · · · , yd] =


x1y1 x1y2 · · · x1yd
x2y1 x2y2 · · · x2yd
...

...
...

xdy1 xdy2 · · · xdyd


Notice that every row is a scalar multiple of the first row of the above matrix. Therefore, when this matrix
is reduced to a row echelon form, it will contain only one non-zero row. Therefore, the outer product x ◦ y
always has rank 1.

Let Y = X>X. Therefore, Y is a d × d matrix. Let xij be the jth element of vector xi. Therefore, X
can be written as

X =


x11 x12 · · · x1d
x21 x22 · · · x2d
...

...
...

xn1 xn2 · · · xnd


Therefore,

Y = XTX =


x11 x21 · · · xn1
x12 x22 · · · xn2
...

...
...

x1d x2d · · · xnd



x11 x12 · · · x1d
x21 x22 · · · x2d
...

...
...

xn1 xn2 · · · xnd

 =

This works out to give Yij =
∑n

k=1 xkixkj where i,j = 1, 2...d. Now we work out the right side of the
equation.

n∑
k=1

xk ◦ xk =

n∑
k=1

xkx
>
k =

n∑
k=1


xk1
xk2
...
xkd

 [xk1, xk2 · · ·xkd] =
n∑

k=1


x2k1 xk1xk2 · · · xk1xkd

xk2xk1 x2k2 · · · xk2xkd
...

...
...

xkdxk1 xkdxk2 · · · x2kd


Thus, the right side of the equation equals Y .

Problem 3 (10 points)
Suppose A and B are d× d matrices which are symmetric (in the sense that Aij = Aji and Bij = Bji for all
i and j) and positive semi-definite. Also suppose that u is a d × 1 vector such that ‖u‖ = 1. Which of the
following matrices are always positive semi-definite, no matter what A, B and u are? Justify your answer.

1. 10A.

2. A+B.

3. uu>.

4. A−B.

5. I − uu> (Hint: Write down x>(I − uu>)x in terms of some dot-products, and try usng Cauchy-
Schwartz.)



Solutions
A general strategy for solving this problem is to first try to prove that the matrixM is positive semi-definite;
if you fail, then try to find a counter-example to disprove the claim. For the latter, you need find out a
specific vector x for which x>Mx < 0.
By the definition of positive semi-definite matrices, for all d× 1 vector x,

x>Ax ≥ 0, x>Bx ≥ 0

1. For the matrix 10A, for all d× 1 vector x,

x>(10A)x = 10(x>Ax) ≥ 0

thus it is positive semidefinite.
2. For the matrix A+B, for all d× 1 vector x,

x>(A+B)x = (x>Ax) + (x>Bx) ≥ 0,

as both x>Ax and x>Bx are ≥ 0. Thus it is positive semidefinite.
3. For the matrix uu>, for all d× 1 vector x,

x>(uu>)x = (x>u)(u>x) = (〈x, u〉)(〈u, x〉) = (〈x, u〉)2 ≥ 0

thus it is positive semidefinite.
4. The matrix A − B is not always positive semi-definite. As a concrete counter-example, take d = 2,

A =

[
1 0
0 1

]
, and B =

[
2 0
0 2

]
. Then A−B =

[
−1 0
0 −1

]
. There exists a 2× 1 vector x = [1, 0]> such that

x>(A−B)x = −1

which proves that A−B is in fact not positive semi-definite.
5. For the matrix I − uu>, for all d× 1 vector x,

x>(I − uu>)x = x>x− (〈x, u〉)2

Now applying Cauchy-Schwarz to (〈x, u〉) and using the fact that ‖u‖ = 1, we find that

(〈x, u〉)2 ≤ ‖x‖2‖u‖2 = ‖x‖2 = x>x

Thus, we conclude
x>(I − uu>)x ≥ 0

This establishes the fact that (I − uu>) is positive semi-definite.

Problem 4 (10 points)
In class, we discussed how to define a norm or a length for a vector. It turns out that one can also define a
norm or a length for a matrix. Two popular matrix norms are the Frobenius norm and the spectral norm.
The Frobenius norm of a m× n matrix A, denoted by ‖A‖F is defined as:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
ij

The spectral norm of a m× n matrix A, denoted by ‖A‖ is defined as:

‖A‖ = max
x

‖Ax‖
‖x‖

where x is a n× 1 vector.



1. Let I be the n × n identity matrix. What is its Frobenius norm? What is its spectral norm? Justify
your answer.

2. Suppose A = uv> where u is a m× 1 vector and v is a n× 1 vector. Write down the Frobenius norm
of A as function of ‖u‖ and ‖v‖. Justify your answer.

3. Write down the spectral norm of A in terms of ‖u‖ and ‖v‖. Justify your answer.

Solutions
Since I is an n × n identity matrix, therefore it has n elements along the diagonal which are 1 and all the
remaining elements are 0. Therefore, the Frobenius norm of I is given by

‖I‖F =
√
n

The spectral norm of I is given by

‖I‖ = max
x

‖Ix‖
‖x‖

= max
x

‖x‖
‖x‖

= 1

Let u = [u1, u2 . . . um]> and v = [v1, v2 . . . vn]
>. Since A = uv>, therefore

A =


u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn
...

...
...

umv1 umv2 · · · umvn


The Frobenius norm of A is given by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

u2i v
2
j =

√√√√ m∑
i=1

u2i

n∑
j=1

v2j =
√
‖u‖2‖v‖2 = ‖u‖‖v‖

In order to find the spectral norm of A, observe that for any n× 1 x,

‖Ax‖ = ‖u〈v, x〉‖ = ‖u‖|〈v, x〉| = ‖u‖‖v‖‖x‖| cos θ|

where θ is the angle between v and x.
| cos θ| attains a maximum value of 1 at θ = 0 or 180. Therefore, ‖A‖ = ‖u‖‖v‖.

Problem 5 (10 points)
Let x be a d× 1 vector. Let yi be constants, zi be d× 1 constant vectors, and βi be d× 1 constant vectors
for 1 ≤ i ≤ n. Write down the gradients for each of the following multivariate functions with respect to x.
Given the other parameters describing the function, what is the time required to compute the gradient at a
specific value of x?

1. F (x) =
∑n

i=1 log(1 + e−yix
>zi).

2. G(x) =
∑n

i=1(x
>βi − yi)2.

3. H(x) =
∑d

i=1 xi log
1
xi
.

4. J(x) = log(
∑d

i=1 e
2xi).



Solutions
1. We use a special case of the multivariate chain rule: if g : Rd → R and f : R→ R, then ∂

∂xj
f(g(x)) =

∂
∂xj

g(x) ∂
∂g(x)f(g(x)). Differentiating F (x) with respect to xj , we have

∂

∂xj
F (x) =

n∑
i=1

∂

∂xj
log(1 + e−yix

>zi)

=

n∑
i=1

(
∂

∂xj
(1 + e−yix

>zi)

)
1

1 + e−yix>zi

Now, we know

∂

∂xj
(1 + e−yix

>zi) =
∂

∂xj
e−yix

>zi

=

(
∂

∂xj
(−yix>zi)

)(
e−yix

>zi
)

= (−yi(zi)j)
(
e−yix

>zi
)
.

where (zi)j is the jth element of zi. Thus, the answer is

∂

∂xj
F (x) =

n∑
i=1

−(zi)jyie−yix
>zi

1 + e−yix>zi
.

We can compute the gradient of F as follows: first, store x>zi for 1 ≤ i ≤ n, taking O(nd) operations.
Then, compute ∂

∂xj
F (x) for 1 ≤ j ≤ d, taking O(n) operations for each j. This takes O(nd)+O(nd) =

O(nd) operations in total.

2. Differentiating G(x) with respect to xj , we have

∂

∂xj
G(x) =

n∑
i=1

∂

∂xj
(x>βi − yi)2

=

n∑
i=1

(
∂

∂xj
(x>βi − yi)

)
2(x>βi − yi)

=
n∑

i=1

2(βi)j(x
>βi − yi)

where (βi)j is the jth element of βi. We can compute the gradient of G as follows: first, store x>βi for
1 ≤ i ≤ n, taking O(nd) operations. Then, compute ∂

∂xj
G(x) for 1 ≤ j ≤ d, taking O(n) operations

for each j. This takes O(nd) +O(nd) = O(nd) operations in total.

3. Differentiating H(x) with respect to xj , we have

∂

∂xj
H(x) =

d∑
i=1

∂

∂xj

(
xi log

1

xi

)
=

∂

∂xj

(
xj log

1

xj

)
.



This is because ∂
∂xj

(
xi log

1
xi

)
= 0 for i 6= j. Finally,

∂

∂xj

(
xj log

1

xj

)
= log

1

xj
+ xj

(
1

1/xj

)(
− 1

x2j

)

= log
1

xj
− 1.

We can compute ∂
∂xj

H(x) for each 1 ≤ j ≤ d in O(1) time, resulting in O(d) total operations.

4. Differentiating J(x) with respect to xj , we have

∂

∂xj
J(x) =

(
∂

∂xj

d∑
i=1

e2xi

)
1∑d

i=1 e
2xi

=

(
∂

∂xj
e2xj

)
1∑d

i=1 e
2xi

This is because ∂
∂xj

e2xi = 0 for i 6= j. Finally,

∂

∂xj
e2xj = 2e2xj .

Thus,

∂

∂xj
J(x) =

2e2xj∑d
i=1 e

2xi

We can compute ∂
∂xj

for 1 ≤ j ≤ d by storing
∑d

i=1 e
2xi , using O(d) operations. Computing ∂

∂xj
for a

particular j takes O(1) operations, and thus the total number of operations is O(d) +O(d) = O(d).


