Problem 1: (10 points)

Let X and Y be random variables with the following joint distribution:

	$X=1$	$X=2$	$X=3$	$X=4$
$Y=0$	$1 / 18$	$1 / 18$	$1 / 9$	$1 / 9$
$Y=1$	$1 / 12$	$1 / 12$	$1 / 6$	0
$Y=2$	0	$1 / 30$	$1 / 30$	$4 / 15$

1. What are the marginal distributions of X and Y ?
2. Are X and Y independent? Justify your answer.
3. What is the conditional distribution of X, given that $Y=2$? What is $\mathbb{E}[X \mid Y=2]$?
4. Calculate $\mathbb{E}[X], \mathbb{E}[Y]$ and $\mathbb{E}[X Y]$.

Problem 2: (4 points)

A coin is tossed three times with probability of heads p. Consider the following four events:

- A: Heads on the first toss
- B: Tails on the second toss
- C: All three outcomes the same
- D: Exactly one head

Which of the following pairs of events are independent? (More than one pair may be independent.) Justify your answer.

1. A and B
2. A and C
3. A and D
4. C and D

Problem 3: (6 points)

Let A and B be the following matrices, and let x be the row vector: $x=[10,1,1]$.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

1. Calculate $A x^{\top}$ and $x B^{\top}$.
2. What is the determinant of A ? What is the determinant of B ?
3. Is $A B=B A$? Justify your answer.

Problem 4: (8 points)

Let $v_{1}=[1,-1,2,0], v_{2}=[1,0,1,1], v_{3}=[1,-2,3,-1]$, and $v_{4}=[3,1,2,4]$.

1. Are $v_{1}, v_{2}, v_{3}, v_{4}$ linearly independent? Justify your answer.
2. Let U be the 4×4 matrix whose rows are v_{1}, \ldots, v_{4}. What is the rank of U ? Justify your answer.
3. Write down a basis of the null-space of U and a basis of the range of U.

Problem 5: (3 points)

Suppose you have a deck of 52 cards, and you draw cards from the deck with replacement uniformly at random independently. Let $X_{1}, X_{2}, \ldots, X_{50}$ be the outcomes of the first 50 draws. Thus, each random variable X_{i} can take values $1, \ldots, 52$, and the probability that it takes each of these values is $\frac{1}{52}$.

1. What is $\mathbb{E}\left[X_{1}\right]$?
2. Let $Z=X_{1}-2 X_{2}+3 X_{3}$. What is $\mathbb{E}[Z]$?
3. Let $Y=X_{1}-X_{2}+X_{3}-X_{4}+\ldots+X_{49}-X_{50}$. What is $\mathbb{E}[Y]$?

Problem 6: (9 points)

Consider the following functions:

$$
f_{1}(x)=e^{10 x+2}, f_{2}(x)=5 x^{12}+2, f_{3}(x)=\frac{1}{1-x}
$$

1. Write down the derivatives of f_{1}, f_{2} and f_{3} with respect to x. Are any of these functions monotonically increasing for all x ? Are any of them monotonically decreasing for all x ?
2. Write down the integrals:

$$
\int f_{1}(x) d x, \int f_{2}(x) d x, \int f_{3}(x) d x
$$

3. Draw a graph of the implicit function $x^{2}+4 y^{2}=4$. Clearly label the regions where $x^{2}+4 y^{2}<4$ and where $x^{2}+4 y^{2}>4$.
