(1) This is an open book, open notes exam. You are free to consult any text book or notes. You are not allowed to consult with any other person.
(2) If you need any clarification, please post a private message to the instructors on Piazza.
(3) Remember that your work is graded on the clarity of your writing and explanation as well as the validity of what you write.
(4) This is a one-hour exam.
(1) State whether the following statements are true or false. Justify your answer.
(a) (5 points) Any diagonal matrix is a valid kernel matrix. (Recall that a matrix A is called diagonal if for all $i \neq j, A_{i j}=0$.)

Solution

False.
Counter example: Consider the diagonal matrix $K=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$. For any vector $v=[v 1, v 2]^{T} \in R^{2}$,
$v^{T} K v=[v 1, v 2]\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}v 1 \\ v 2\end{array}\right]=-v 1^{2}-v 2^{2} \leq 0$. Therefore, there exists $\mathrm{v}\left(\right.$ For example, $\left.v=[1,0]^{T}\right)$
such that $v^{T} K v<0$. Hence, K is not PSD $\Longrightarrow \mathrm{K}$ is not a kernal matrix.
(b) (5 points) If $K(x, z)$ is a kernel function, then for all x and $z, K(x, x)+K(z, z)-2 K(x, z) \geq 0$.

Solution

True.
Since $K(x, z)$ is a kernel, there exists a feature map ϕ such that $K(x, z)=\langle\phi(x), \phi(z)\rangle$.

$$
\begin{aligned}
K(x, x)+K(z, z)-2 K(x, z) & =\langle\phi(x), \phi(x)\rangle+\langle\phi(z), \phi(z)\rangle-2\langle\phi(x), \phi(z)\rangle \\
& =\langle\phi(x)-\phi(z), \phi(x)-\phi(z)\rangle \\
& =\|\phi(x)-\phi(z)\|^{2} \\
& \geq 0
\end{aligned}
$$

(2) For each of the following functions, state if they are a kernel function. If yes, provide the corresponding feature map; if no, provide a short proof.
(a) (5 points) S and T are subsets of $\{1,2, \ldots, 100\} . K(S, T)=|S \cup T|$.

Solution

False.
Let $x_{1}=\phi$, an empty set and $x_{2}=\{1\}$. Consider the matrix
$K=\left[\begin{array}{ll}K\left(x_{1}, x_{1}\right) & K\left(x_{1}, x_{2}\right) \\ K\left(x_{1}, x_{2}\right) & K\left(x_{2}, x_{2}\right)\end{array}\right]=\left[\begin{array}{ll}|\phi \cup \phi| & |\phi \cup 1| \\ |1 \cup \phi| & |1 \cup 1|\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$.
For $v=[1,-1]^{T}, v^{T} K v=-1<0$, which implies K is not a PSD matrix. Therefore, $|S \cup T|$ is not a kernel.
(b) (5 points) S and T are subsets of $\{1,2, \ldots, 100\} . K(S, T)=|S \cap T|$.

Solution

True. This kernel function is sinilar to the string kernel for the case where $\mathrm{p}=1$ i.e it represents the number of common elements/letters in S and T. Therefore, we can define a similar feature map in this case as well.
Consider the feature map $\phi(x)=\left[\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{100}(x)\right]^{\top}$ where $\phi_{k}(S)=I(k \in S)=\left\{\begin{array}{ll}1 & k \in S \\ 0 & k \notin S\end{array}\right.$.
We can see that $K(S, T)=|S \cap T|=\sum_{i=1: 100} \phi_{i}(S) \cdot \phi_{i}(T)=\langle\phi(S), \phi(T)\rangle$. For instance, let $S=\{1,2\}$ and $T=\{2,4\} . \phi(S)=[1,1,0,0, \ldots, 0]$ and $\phi(T)=[0,1,0,1,0,0, \ldots, 0] . K(S, T)=|S \cap T|=|\{2\}|=1$.
$\langle\phi(S), \phi(T)\rangle=\langle[1,1,0,0, \ldots, 0],[0,1,0,1,0,0, \ldots, 0]\rangle=1.0+1.1+0.0+0.1+0.0+0.0+\ldots .+0.0=1$.
Thus, K is a kernel because there exists a feature map $\phi($.$) such that K(S, T)=\langle\phi(S), \phi(T)\rangle$.

