(1) This is an open book, open notes exam. You are free to consult any text book or notes. You are not allowed to consult with any other person.
(2) If you need any clarification, please post a private message to the instructors on Piazza.
(3) Remember that your work is graded on the clarity of your writing and explanation as well as the validity of what you write.
(4) This is a one-hour exam.
(1) We are given a training set $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ where $y_{i} \in\{-1,1\}$ and each x_{i} is a $d \times 1$ vector. Suppose we know that the feature vectors x_{1}, \ldots, x_{n} lie on a k-dimensional subspace T of \mathbb{R}^{d}. State whether the following statements are true or false. Justify your answer.
(a) (5 points) Suppose we run Perceptron for a single pass on S starting with an initial point $w_{0}=0$ (the all zeros vector). Does the output w_{P} lie in T ? Justify your answer.

Solution

Yes, the output weights w_{P} will lie in T. This can be explained by looking at the perceptron algorithm. In perceptron algorithm, we initialize our weights with some initial value w_{0} which is the zero vector in our case. Then, for every data-point x_{t}, we update the weights as per the equation $w_{t+1}=w_{t}+y_{t} x_{t}$ if the point is wrongly classified (i.e. $\left.\operatorname{sign}\left(<w_{t} \cdot x_{t}>\right) \neq y_{t}\right)$ and the weights remain the same if the point is correctly classified. Thus, w_{P} can be written as

$$
w_{P}=\sum_{i=1}^{n} \delta_{i} x_{i} \text { where } \delta_{i} \in\{-1,0,1\}
$$

Here, $\delta_{i}=y_{i}$ for wrongly classified data-points and $\delta_{i}=0$ for points which get correctly classified. Thus, w_{P} is a linear combination of the feature vectors $x_{i} \mathrm{~s}$ all lying in the subspace T which implies that w_{P} will also lie in T.
(b) (5 points) Now suppose we run gradient descent for logistic regression on S for a 100 iterations starting with an initial point $w_{0}=0$. Does the output w_{L} lie in T ? Justify your answer.

Solution

Yes, the output weights w_{L} lie in T. This can be explained in a similar way as that of perceptron. The update rule for Logistic Regression (From Class Notes) is -

$$
\begin{gathered}
w_{t+1}=w_{t}+\eta_{t} \sum_{i=1}^{n} \frac{y_{i} x_{i}}{1+e^{y_{i} w^{T} x_{i}}} \\
w_{t+1}=w_{t}+\eta_{t} \sum_{i=1}^{n} \delta_{i} x_{i} \text { where } \delta_{i}=\frac{y_{i}}{1+e^{y_{i} w^{T} x_{i}}}
\end{gathered}
$$

Here, δ_{i} is a scalar. Thus, In an iteration, the update to the weights is a linear combination of the feature vectors x_{i} s all lying in the subspace T. This implies that the resulting weights w_{L} will also be a linear combination of the feature vectors and will lie in T.
(2) (5 points) Write down an example of a dataset that is (a) linearly separable, but (b) where running a single pass of Perceptron does not lead to a classifier with zero training error.

Solution

A 2-D Example with two data points. Let $S=\{(1,2),(1,3)\}$ where $(1,2)$ has a label -1 and $(1,3)$ has a label 1. This is clearly a linearly separable data in 2 D space. Let the initial weight vector $w_{0}=(0,0)$.

Step: 1 Input x is $(1,2) . w^{T} x=0$ since $w=0$. As per the perceptron rule, we'll update the weights. $w_{1}=(0,0)+(-1)(1,2)=(-1,-2)$
Step: 2 Input x is $(1,3) . w^{T} x=-7$. As per the perceptron rule, we'll update the weights. $w_{1}=(-1,-2)+$ $(1)(1,3)=(0,1)$
This completes a single pass on the dataset. With these weights, the data point $(1,2)$ is still mis-classified as $w^{T} x=2>0$ and the label for this point is -1 .
(3) (5 points) Suppose Alice and Bob are given the same training dataset S. Alice finds a classifier w_{A} that exactly minimizes the logistic regression loss function. Bob finds a classifier w_{B} that minimizes the loss function:

$$
w_{B}=\operatorname{argmin}_{w} \exp \left(\sum_{i=1}^{n} \log \left(1+e^{-y_{i} w^{\top} x_{i}}\right)\right)
$$

Is $w_{A}=w_{B}$ for all training sets S ? Justify your answer.

Solution

Yes, $w_{A}=w_{B}$ for all training sets S. This is because, in both cases, the loss function is equivalent. From lecture notes, we have the loss function for w_{A} is

$$
w_{A}=\operatorname{argmin}_{w} \sum_{i=1}^{n} \log \left(1+e^{-y_{i} w^{\top} x_{i}}\right)
$$

Just like \log, exp is also a monotonic function and thus minimizing/maximizing x and $\exp (x)$ are equivalent. Thus loss function for w_{A} can also be written as

$$
w_{A}=\operatorname{argmin}_{w} \exp \left[\sum_{i=1}^{n} \log \left(1+e^{-y_{i} w^{\top} x_{i}}\right)\right]
$$

which is same as the loss function for w_{B}. Hence, these classifiers are equivalent.

