- (1) This is an open book, open notes exam. You are free to consult any text book or notes. You are not allowed to consult with any other person.
- (2) If you need any clarification, please post a private message to the instructors on Piazza.
- (3) Remember that your work is graded on the *clarity* of your writing and explanation as well as the validity of what you write.
- (4) This is a one-hour exam.
- (1) In class we defined positive semidefinite (PSD) matrices. A $d \times d$ matrix A is said to be positive definite (PD) if for all $d \times 1$ vectors x that are not the all-zeros vector, we have that $x^{\top}Ax > 0$. Observe that a positive definite matrix is also positive semi-definite, but a positive semi-definite matrix may not be positive definite.

For each of the following matrices, state if they are (a) positive definite (b) positive semi-definite but not positive definite (c) not positive semi-definite. Justify your answer with a short proof.

(a) (3 points) Let u be a $d \times 1$ unit vector – that is, ||u|| = 1. $A = uu^{\top}$.

(b) (3 points) $B = 2I_d$. (Recall I_d is the $d \times d$ identity matrix.)

(c) (4 points) Let u be a $d \times 1$ unit vector – that is, ||u|| = 1. $C = uu^{\top} - \frac{1}{2}I_d$.

(2) (5 points) Let x be a $d \times 1$ vector, let z_1, \ldots, z_n be n vectors, where each z_i is $d \times 1$, and let $f : \mathbb{R}^d \to \mathbb{R}$ be the following multivariate function of x:

$$f(x) = \sum_{i=1}^{n} e^{x^{\top} z_i}$$

Write down the gradient of f with respect to x. Write down an algorithm that computes this gradient in O(nd) time when given the vectors z_1, \ldots, z_n .

(3) (5 points) Given a $d \times d$ matrix A, its Frobenius norm is defined as:

$$||A||_F = \sqrt{\sum_{i=1}^d \sum_{j=1}^d A_{ij}^2}$$

Now suppose we are given two $d \times 1$ vectors x and y. State whether the following statement is true or false. Justify your answer.

$$x^{\top}y \le \|xy^{\top}\|_F$$