(1) This is an open book, open notes exam. You are free to consult any text book or notes. You are not allowed to consult with any other person.
(2) If you need any clarification, please post a private message to the instructors on Piazza.
(3) Remember that your work is graded on the clarity of your writing and explanation as well as the validity of what you write.
(4) This is a one-hour exam.
(1) In class we defined positive semidefinite (PSD) matrices. A $d \times d$ matrix A is said to be positive definite (PD) if for all $d \times 1$ vectors x that are not the all-zeros vector, we have that $x^{\top} A x>0$. Observe that a positive definite matrix is also positive semi-definite, but a positive semi-definite matrix may not be positive definite.

For each of the following matrices, state if they are (a) positive definite (b) positive semi-definite but not positive definite (c) not positive semi-definite. Justify your answer with a short proof.
(a) (3 points) Let u be a $d \times 1$ unit vector - that is, $\|u\|=1 . A=u u^{\top}$.
(b) (3 points) $B=2 I_{d}$. (Recall I_{d} is the $d \times d$ identity matrix.)
(c) (4 points) Let u be a $d \times 1$ unit vector - that is, $\|u\|=1 . C=u u^{\top}-\frac{1}{2} I_{d}$.
(2) (5 points) Let x be a $d \times 1$ vector, let z_{1}, \ldots, z_{n} be n vectors, where each z_{i} is $d \times 1$, and let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the following multivariate function of x :

$$
f(x)=\sum_{i=1}^{n} e^{x^{\top} z_{i}}
$$

Write down the gradient of f with respect to x. Write down an algorithm that computes this gradient in $O(n d)$ time when given the vectors z_{1}, \ldots, z_{n}.
(3) (5 points) Given a $d \times d$ matrix A, its Frobenius norm is defined as:

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{d} \sum_{j=1}^{d} A_{i j}^{2}}
$$

Now suppose we are given two $d \times 1$ vectors x and y. State whether the following statement is true or false. Justify your answer.

$$
x^{\top} y \leq\left\|x y^{\top}\right\|_{F}
$$

