(1) This is an open book, open notes exam. You are free to consult any text book or notes. You are not allowed to consult with any other person.
(2) If you need any clarification, please post a private message to the instructors on Piazza.
(3) Remember that your work is graded on the clarity of your writing and explanation as well as the validity of what you write.
(4) This is a one-hour exam.
(1) Let X and Y be random variables with the following joint distribution.

	$X=1$	$X=2$	$X=3$
$Y=0$	$1 / 4$	$1 / 4$	$1 / 4$
$Y=1$	$1 / 12$	0	$1 / 6$

Now answer the following questions.
(a) (4 points) What are the marginal distributions of X and Y ?

To calculate the marginal distribution of X, we use the formula: $\operatorname{Pr}(X=x)=\sum_{y=0,1} \operatorname{Pr}(X=x, Y=y)$. This gives us the marginal distribution:

$$
\operatorname{Pr}(X=1)=1 / 3, \operatorname{Pr}(X=2)=1 / 4, \operatorname{Pr}(X=3)=5 / 12
$$

Similarly to calculate the marginal distribution of Y, we use: $\operatorname{Pr}(Y=y)=\sum_{x=1,2,3} \operatorname{Pr}(X=x, Y=y)$. This gives us the distribution:

$$
\operatorname{Pr}(Y=0)=3 / 4, \operatorname{Pr}(Y=1)=1 / 4
$$

(b) (4 points) What are the conditional expectations $\mathbb{E}[X \mid Y=1]$ and $\mathbb{E}[Y \mid X=1]$?

We first calculate the conditional distributions of $X \mid Y=1$ and $Y \mid X=1$ using the Bayes Rule: $\operatorname{Pr}(X=$ $x \mid Y=y)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(Y=y)}$. The conditional distribution of $X \mid Y=1$ is:

$$
\operatorname{Pr}(X=1 \mid Y=1)=1 / 3, \operatorname{Pr}(X=2 \mid Y=1)=0, \operatorname{Pr}(X=3 \mid Y=1)=2 / 3
$$

The conditional distribution of $Y \mid X=1$ can be similarly calculated:

$$
\operatorname{Pr}(Y=0 \mid X=1)=3 / 4, \operatorname{Pr}(Y=1 \mid X=1)=1 / 4
$$

(c) (2 points) Are X and Y independent? Justify your answer.
X and Y are not independent. To see this, observe that $\operatorname{Pr}(X=2, Y=1)=0$ while $\operatorname{Pr}(X=2) \times \operatorname{Pr}(Y=$ 1) $=1 / 4 \times 1 / 4=1 / 16$.
(2) (5 points) Let a_{1}, \ldots, a_{k} be k real numbers. Consider the following function:

$$
f(x)=\sum_{i=1}^{k} \log \left(1+e^{a_{i} x}\right)
$$

Write down the derivative of $f(x)$. Use this derivative to write down a condition on the numbers a_{1}, \ldots, a_{k} that ensures that $f(x)$ is strictly increasing at $x=0$.

The derivative is:

$$
f^{\prime}(x)=\sum_{i=1}^{k} \frac{1}{1+e^{a_{i} x}} \cdot e^{a_{i} x} \cdot a_{i}=\sum_{i=1}^{k} \frac{a_{i}}{1+e^{-a_{i} x}}
$$

$f(x)$ is strictly increasing at $x=0$ if $f^{\prime}(0)>0$. In other words:

$$
\sum_{i=1}^{k} \frac{a_{i}}{2}>0
$$

which is the same as $\sum_{i=1}^{k} a_{i}>0$.
(3) (5 points) Let $v_{1}=[3,5,1], v_{2}=[2,1,3]$ and $v_{3}=[12,13,11]$. Are v_{1}, v_{2} and v_{3} linearly independent? Justify your answer. To check if they are linearly independent, we try Gaussian elimination of the matrix:

$$
\left[\begin{array}{ccc}
3 & 5 & 1 \\
2 & 1 & 3 \\
12 & 13 & 11
\end{array}\right]
$$

To eliminate Row 1, we do: $R 2 \leftarrow R 2-\frac{2}{3} \times R 1$ and $R 3 \leftarrow R 3-4 R 1$. This gives us the matrix:

$$
\left[\begin{array}{ccc}
3 & 5 & 1 \\
0 & -\frac{7}{3} & \frac{7}{3} \\
0 & -7 & 7
\end{array}\right]
$$

Now, we can eliminate Row 2 by doing the operation: $R 3 \leftarrow R 3-2 R 2$ to get:

$$
\left[\begin{array}{ccc}
3 & 5 & 1 \\
0 & -\frac{7}{3} & \frac{7}{3} \\
0 & 0 & 0
\end{array}\right]
$$

Since this matrix has an all-zero row, it has rank 2, and so does the matrix $\left[\begin{array}{ccc}3 & 5 & 1 \\ 2 & 1 & 3 \\ 12 & 13 & 11\end{array}\right]$. Thus the vectors
v_{1}, v_{2} and v_{3} are not linearly independent.

