Lecture 23: Modulation

CSE 123: Computer Networks
Alex C. Snoeren

HW 4 DUE NEXT WEDNESDAY
Lecture 23 Overview

- **Signaling**
 - Channel characteristics

- **Signaling constraints**
 - Inter-Symbol Interference
 - Shannon’s Law

- **Encoding schemes**
 - Clock recovery
 - Manchester, NRZ, NRZI, etc.
Two Main Tasks

- First we need to transmit a signal
 - Determine how to send the data, and how quickly

- Then we need to receive a (degraded) signal
 - Figure out when someone is sending us bits
 - Determine which bits they are sending

- A lot like a conversation
 - “WhatintheworldamIsaying” – needs punctuation and pacing
 - Helps to know what language I’m speaking
Binary signaling with Voltage

- Encode 1’s and 0’s on a wire
 - +5 volts = 1
 - -5 volts = 0
The Magic of Sine Waves

- All periodic signals can be expressed as sine waves
 - Component waves are of different frequencies

- Sine waves are “nice”
 - Phase shifted or scaled by most channels

- “Easy” to analyze
 - But not in this class…

- The higher the frequency, the “sharper” the edges
Channel Properties

- **Bandwidth-limited**
 - Range of frequencies the channel will transmit
 - Means the channel is slow to react to change in signal

- **Power attenuates** over distance
 - Signal gets softer (harder to “hear”) the further it travels
 - Different frequencies have different response (distortion)

- **Background noise** or interference
 - May add or subtract from original signal

- **Different physical characteristics**
 - Point-to-point vs. shared media
 - Very different price points to deploy
Carrier Signals

- **Baseband** modulation: send the “bare” signal
 - E.g. +5 Volts for 1, -5 Volts for 0
 - All signals fall in the same frequency range

- **Broadband** modulation
 - Use the signal to modulate a high frequency signal (*carrier*).
 - Can be viewed as the product of the two signals
Forms of Digital Modulation

Input Signal

Amplitude Shift Keying (ASK)

Frequency Shift Keying (FSK)

Phase Shift Keying (PSK)

Phase changes
Nyquist rate

- Bandlimited channels cannot respond faster than some maximum frequency f
 - Channel takes some time to settle

- Attempting to signal too fast will mix symbols
 - Previous symbol still “settling in”
 - Mix (add/subtract) adjacent symbols
 - Leads to intersymbol interference (ISI)

- Nyquist says in a channel bandlimited to f, we can send at maximum symbol (baud) rate of $2f$ without ISI
Hartley’s Law

- Nyquist limits the number of symbols per second we can send, but doesn’t talk about the information content in each symbol.

- Couldn’t we send *multiple* bits per symbol?
 - E.g., multiple voltage levels instead of just high/low
 - Four levels gets you two bits, \(\log_2 M \) in general (M levels)

- Can combine this observation with Nyquist
 - *Channel capacity:* \(C < 2 B \log_2(M) \)

What limits the number of levels we can send?
A. Sender power
B. Receiver fidelity
C. Channel properties
D. All of the above
Noise matters

- Real channels are noisy... noise creates measurement challenges
- Example:
 - Encode 4 values using voltage
 - 2 bits per symbol
 - Symbols at 3V, 2V, 1V and 0V
 - What if noise is 0.5V?
 - If you get line level of 2.5V then what symbol is it? 11 or 10?
- Limited to \(\sim \log_2 (S/2N) \) bits per symbol
 - \(S = \text{signal power}, \ N = \text{Noise} \)
 - Previous example: \(S = 3V-0V=3V, \ N=0.5V \), so we can have \(\log_2(3/1) = 1.58 \) bits per symbol
Shannon considered noisy channels and derived

\[C = B \log (1 + S/N) \]

- Gives us an upper bound on any channel’s performance regardless of signaling scheme

- Old school modems approached this limit
 - \(B = 3000\text{Hz}, \ S/N = 30\text{dB} = 1000 \)
 - \(C = 3000 \times \log(1001) \approx 30\text{kbps} \)
 - 28.8Kbps – anyone remember dialup?
The sounds of modulation

3.
V.34 (1994):
28.8K - 33.6K

-Uses an automated smart training sequence
-Superior echo cancellation
-Adapts automatically to poor lines
Modulation: TCM

https://www.youtube.com/watch?v=ckc6XSSh52w
Sampling

- To reconstruct signal we need to sample it

Which of the following are potential interpretations of the signal at left?
A. 1101
B. 11110011
C. 0000
D. All of the above
Why sampling rate matters...

- Signal could have multiple interpretations

Which of these is correct?
The Importance of Phase

- Need to determine when to START sampling, too

![Diagram showing input and output signals with ideal sampling points at receiver](image)
Clock Recovery

- Using a training sequence to get receiver lined up
 - Send a few, known initial training bits
 - Adds inefficiency: only m data bits out of n transmitted

- Need to combat clock drift as signal proceeds
 - Use transitions to keep clocks synched up

- Question is, how often do we do this?
 - Quick and dirty every time: asynchronous coding
 - Spend a lot of effort to get it right, but amortize over lots of data: synchronous coding
Asynchronous Coding

- Encode several bits (e.g. 7) together with a leading “start bit” and trailing “stop bit”
- Data can be sent at any time
- Start bit transition kicks of sampling intervals
 - Can only run for a short while before drifting
Example: RS232 serial lines

- Uses two voltage levels (+15V, -15V), to encode single bit binary symbols
- Needs long idle time – limited transmit rate
Synchronous Coding

- Asynchronous receiver phase locks each symbol
 - Takes time, limiting transmission rates

- So, start symbols need to be extra slow
 - Need to fire up the clock, which takes time

- Instead, let’s do this training once, then just keep sync
 - Need to continually adjust clock as signal arrives
 - Ever hear of Phase Lock Loops (PLLs)?

- Basic idea is to use transitions to lock in
Non-Return to Zero (NRZ)

- **Signal to Data**
 - High $\Rightarrow 1$
 - Low $\Rightarrow 0$

- **Comments**
 - Transitions maintain clock synchronization
 - Long strings of 0s confused with no signal
 - Long strings of 1s causes *baseline wander*
 - We use average signal level to infer high vs low
 - Both inhibit clock recovery
Non-Return to Zero Inverted (NRZI)

- Signal to Data
 - Transition $\Rightarrow 1$
 - Maintain $\Rightarrow 0$

- Comments
 - Solves series of 1s, but not 0s
Manchester Encoding
(10Mbps Ethernet)

- Signal to Data
 - XOR NRZ data with senders clock signal
 - High to low transition $\Rightarrow 1$
 - Low to high transition $\Rightarrow 0$

- Comments
 - Solves clock recovery problem
 - Only 50% efficient (1/2 bit per transition)
 - Still need preamble (typically 0101010101... trailing 11 in Ethernet)
Encoding Summary

- **Signaling & Modulation**
 - Transforming digital signal to and from analog representation
 - Fundamental limits (Shannon)
 - Lots of ways to encode signal (modulation) onto a given medium

- **Clock recovery**
 - Receiver needs to adjust its sampling times to best extract signal from channel
 - Sender can code signal to make it far easier to do this
For Next Time

- Read 2.6 in P&D
- HW 4 due next Wednesday
- Keep going on the project…