Nearest neighbor classification

CSE 250B
The problem we’ll solve today

Given an image of a handwritten digit, say which digit it is.

3
The problem we’ll solve today

Given an image of a handwritten digit, say which digit it is.

Some more examples:
The machine learning approach

Assemble a data set:

The MNIST data set of handwritten digits:

- **Training set** of 60,000 images and their labels.
- **Test set** of 10,000 images and their labels.

And let the machine figure out the underlying patterns.
Nearest neighbor classification

Training images $x^{(1)}, x^{(2)}, x^{(3)}, \ldots, x^{(60000)}$
Labels $y^{(1)}, y^{(2)}, y^{(3)}, \ldots, y^{(60000)}$ are numbers in the range 0 – 9

How to classify a new image x?

• Find its nearest neighbor amongst the $x^{(i)}$
• Return $y^{(i)}$
The data space

How to measure the distance between images?

MNIST images:

• Size 28 × 28 (total: 784 pixels)
• Each pixel is grayscale: 0-255
The data space

How to measure the distance between images?

MNIST images:
- Size 28×28 (total: 784 pixels)
- Each pixel is grayscale: 0-255

Stretch each image into a vector with 784 coordinates:

- Data space $\mathcal{X} = \mathbb{R}^{784}$
- Label space $\mathcal{Y} = \{0, 1, \ldots, 9\}$
The distance function

Remember Euclidean distance in two dimensions?

\[z = (3, 5) \]

\[x = (1, 2) \]
Euclidean distance in higher dimension

Euclidean distance between 784-dimensional vectors x, z is

$$\|x - z\| = \sqrt{\sum_{i=1}^{784} (x_i - z_i)^2}$$

Here x_i is the ith coordinate of x.
Nearest neighbor classification

Training images $x^{(1)}, \ldots, x^{(60000)}$, labels $y^{(1)}, \ldots, y^{(60000)}$

To classify a new image x:

- Find its nearest neighbor amongst the $x^{(i)}$ using Euclidean distance in \mathbb{R}^{784}
- Return $y^{(i)}$

How accurate is this classifier?
Accuracy of nearest neighbor on MNIST

Training set of 60,000 points.

- What is the error rate on training points? Zero.

In general, training error is an overly optimistic predictor of future performance.

- A better gauge: separate test set of 10,000 points.
 - Test error is the fraction of test points incorrectly classified.

- What test error would we expect for a random classifier? (One that picks a label $0 - 9$ at random?) 90%.

- Test error of nearest neighbor: 3.09%.
Accuracy of nearest neighbor on MNIST

Training set of 60,000 points.

- What is the error rate on training points? **Zero.**
 In general, training error is an overly optimistic predictor of future performance.

- A better gauge: separate test set of 10,000 points.

 Test error = fraction of test points incorrectly classified.

- What test error would we expect for a random classifier? (One that picks a label $0-9$ at random?) **90%.**

- Test error of nearest neighbor: **3.09%.**
Accuracy of nearest neighbor on MNIST

Training set of 60,000 points.

- What is the error rate on training points? **Zero.** In general, *training error* is an overly optimistic predictor of future performance.

- A better gauge: separate test set of 10,000 points. **Test error** = fraction of test points incorrectly classified.

 - What test error would we expect for a *random classifier*? (One that picks a label $0-9$ at random?) **90%**.

 - Test error of nearest neighbor: **3.09%**.
Accuracy of nearest neighbor on MNIST

Training set of 60,000 points.

- What is the error rate on training points? Zero. In general, training error is an overly optimistic predictor of future performance.

- A better gauge: separate test set of 10,000 points. Test error = fraction of test points incorrectly classified.

- What test error would we expect for a random classifier? (One that picks a label 0 – 9 at random?)
Accuracy of nearest neighbor on MNIST

Training set of 60,000 points.

• What is the error rate on training points? **Zero.**
 In general, **training error** is an overly optimistic predictor of future performance.

• A better gauge: separate test set of 10,000 points.
 Test error = fraction of test points incorrectly classified.

• What test error would we expect for a *random classifier*? (One that picks a label $0 - 9$ at random?) **90%.**
Accuracy of nearest neighbor on MNIST

Training set of 60,000 points.

- What is the error rate on training points? **Zero.** In general, *training error* is an overly optimistic predictor of future performance.

- A better gauge: separate test set of 10,000 points. **Test error** = fraction of test points incorrectly classified.

- What test error would we expect for a *random classifier*? (One that picks a label $0 - 9$ at random?) **90%**.

- Test error of nearest neighbor: **3.09%**.
Examples of errors

Test set of 10,000 points:
• 309 are misclassified
• Error rate 3.09%

Examples of errors:

Query

NN
Examples of errors

Test set of 10,000 points:
- 309 are misclassified
- Error rate 3.09%

<table>
<thead>
<tr>
<th>Query</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Ideas for improvement: (1) k-NN (2) better distance function.
K-nearest neighbor classification

Classify a point using the labels of its k nearest neighbors among the training points.

MNIST:

<table>
<thead>
<tr>
<th>k</th>
<th>Test error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.09</td>
</tr>
<tr>
<td>3</td>
<td>2.94</td>
</tr>
<tr>
<td>5</td>
<td>3.13</td>
</tr>
<tr>
<td>7</td>
<td>3.10</td>
</tr>
<tr>
<td>9</td>
<td>3.43</td>
</tr>
<tr>
<td>11</td>
<td>3.34</td>
</tr>
</tbody>
</table>

In real life, there's no test set. How to decide which k is best?

1. **Hold-out set.**
 - Let S be the training set.
 - Choose a subset $V \subset S$ as a validation set.
 - What fraction of V is misclassified by finding the k-nearest neighbors in $S \setminus V$?

2. **Leave-one-out cross-validation.**
 - For each point $x \in S$, find the k-nearest neighbors in $S \setminus \{x\}$.
 - What fraction are misclassified?
Classify a point using the labels of its k nearest neighbors among the training points.

MNIST:

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test error (%)</td>
<td>3.09</td>
<td>2.94</td>
<td>3.13</td>
<td>3.10</td>
<td>3.43</td>
<td>3.34</td>
</tr>
</tbody>
</table>

In real life, there's no test set. How to decide which k is best?

1. **Hold-out set.**
 - Let S be the training set.
 - Choose a subset $V \subset S$ as a validation set.
 - What fraction of V is misclassified by finding the k-nearest neighbors in $S \setminus V$?

2. **Leave-one-out cross-validation.**
 - For each point $x \in S$, find the k-nearest neighbors in $S \setminus \{x\}$.
 - What fraction are misclassified?
K-nearest neighbor classification

Classify a point using the labels of its k nearest neighbors among the training points.

<table>
<thead>
<tr>
<th>k</th>
<th>Test error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.09</td>
</tr>
<tr>
<td>3</td>
<td>2.94</td>
</tr>
<tr>
<td>5</td>
<td>3.13</td>
</tr>
<tr>
<td>7</td>
<td>3.10</td>
</tr>
<tr>
<td>9</td>
<td>3.43</td>
</tr>
<tr>
<td>11</td>
<td>3.34</td>
</tr>
</tbody>
</table>

In real life, there’s no test set. How to decide which k is best?
K-nearest neighbor classification

Classify a point using the labels of its k nearest neighbors among the training points.

<table>
<thead>
<tr>
<th>k</th>
<th>Test error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.09</td>
</tr>
<tr>
<td>3</td>
<td>2.94</td>
</tr>
<tr>
<td>5</td>
<td>3.13</td>
</tr>
<tr>
<td>7</td>
<td>3.10</td>
</tr>
<tr>
<td>9</td>
<td>3.43</td>
</tr>
<tr>
<td>11</td>
<td>3.34</td>
</tr>
</tbody>
</table>

In real life, there’s no test set. How to decide which k is best?

1. **Hold-out set.**
 - Let S be the training set.
 - Choose a subset $V \subset S$ as a *validation set*.
 - What fraction of V is misclassified by finding the k-nearest neighbors in $S \setminus V$?
K-nearest neighbor classification

Classify a point using the labels of its k nearest neighbors among the training points.

<table>
<thead>
<tr>
<th>k</th>
<th>Test error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.09</td>
</tr>
<tr>
<td>3</td>
<td>2.94</td>
</tr>
<tr>
<td>5</td>
<td>3.13</td>
</tr>
<tr>
<td>7</td>
<td>3.10</td>
</tr>
<tr>
<td>9</td>
<td>3.43</td>
</tr>
<tr>
<td>11</td>
<td>3.34</td>
</tr>
</tbody>
</table>

MNIST:

In real life, there’s no test set. How to decide which k is best?

1. **Hold-out set.**
 - Let S be the training set.
 - Choose a subset $V \subset S$ as a *validation set*.
 - What fraction of V is misclassified by finding the k-nearest neighbors in $S \setminus V$?

2. **Leave-one-out cross-validation.**
 - For each point $x \in S$, find the k-nearest neighbors in $S \setminus \{x\}$.
 - What fraction are misclassified?
How to estimate the error of k-NN for a particular k?

10-fold cross-validation

- Divide the training set into 10 equal pieces.
 Training set (call it S): 60,000 points
 Call the pieces S_1, S_2, \ldots, S_{10}: 6,000 points each.

- For each piece S_i:
 - Classify each point in S_i using k-NN with training set $S - S_i$
 - Let $\epsilon_i =$ fraction of S_i that is incorrectly classified

- Take the average of these 10 numbers:

\[
\text{estimated error with } k\text{-NN} = \frac{\epsilon_1 + \cdots + \epsilon_{10}}{10}
\]
Another improvement: better distance functions

The Euclidean (ℓ_2) distance between these two images is very high!

Test error rates:

ℓ_2 tangent distance shape context
3.09 1.10 0.63
Another improvement: better distance functions

The Euclidean (ℓ_2) distance between these two images is very high!

Much better idea: distance measures that are invariant under:

- Small translations and rotations. e.g. *tangent distance*.
- A broader family of natural deformations. e.g. *shape context*.
Another improvement: better distance functions

The Euclidean (ℓ_2) distance between these two images is very high!

Much better idea: distance measures that are invariant under:

- Small translations and rotations. e.g. tangent distance.
- A broader family of natural deformations. e.g. shape context.

Test error rates: \[
\begin{array}{ccc}
\ell_2 & \text{tangent distance} & \text{shape context} \\
3.09 & 1.10 & 0.63 \\
\end{array}
\]
Related problem: feature selection

Feature selection/reweighting is part of picking a distance function. And, one noisy feature can wreak havoc with nearest neighbor!
Related problem: feature selection

Feature selection/reweighting is part of picking a distance function. And, one noisy feature can wreak havoc with nearest neighbor!
Algorithmic issue: speeding up NN search

Naive search takes time $O(n)$ for training set of size n: slow!

There are data structures for speeding up nearest neighbor search, like:

1. Locality sensitive hashing
2. Ball trees
3. K-d trees

These are part of standard Python libraries for NN, and help a lot.
Algorithmic issue: speeding up NN search

Naive search takes time $O(n)$ for training set of size n: slow!

There are data structures for speeding up nearest neighbor search, like:

1. Locality sensitive hashing
2. Ball trees
3. K-d trees

These are part of standard Python libraries for NN, and help a lot.
Example: k-d trees for NN search

A hierarchical, rectilinear spatial partition.

For data set $S \subset \mathbb{R}^d$:

- Pick a coordinate $1 \leq i \leq d$.
- Compute $v = \text{median}(\{x_i : x \in S\})$.
- Split S into two halves:

$$S_L = \{x \in S : x_i < v\}$$
$$S_R = \{x \in S : x_i \geq v\}$$

- Recurse on S_L, S_R
Example: k-d trees for NN search

A hierarchical, rectilinear spatial partition.

For data set $S \subset \mathbb{R}^d$:

- Pick a coordinate $1 \leq i \leq d$.
- Compute $v = \text{median}(\{x_i : x \in S\})$.
- Split S into two halves:

 $$S_L = \{x \in S : x_i < v\}$$
 $$S_R = \{x \in S : x_i \geq v\}$$

- Recurse on S_L, S_R

Two types of search, given a query $q \in \mathbb{R}^d$:

- **Defeatist search**: Route q to a leaf cell and return the NN in that cell. This might not be the true NN.

- **Comprehensive search**: Grow the search region to other cells that cannot be ruled out using the triangle inequality.
The curse of dimension in NN search

Situation: n data points in \mathbb{R}^d.

Storage is $O(n^d)$.

Time to compute distance is $O(d)$ for ℓ_p norms.

Geometry: It is possible to have $O(n^d)$ points that are roughly equidistant from each other.

Current methods for fast exact NN search have time complexity proportional to 2^d.
The curse of dimension in NN search

Situation: n data points in \mathbb{R}^d.

1. **Storage** is $O(nd)$.
The curse of dimension in NN search

Situation: \(n \) data points in \(\mathbb{R}^d \).

1. **Storage** is \(O(nd) \)
2. **Time to compute distance** is \(O(d) \) for \(\ell_p \) norms
The curse of dimension in NN search

Situation: n data points in \mathbb{R}^d.

1. **Storage** is $O(nd)$
2. **Time to compute distance** is $O(d)$ for ℓ_p norms
3. **Geometry**
 It is possible to have $2^{O(d)}$ points that are roughly equidistant from each other.
The curse of dimension in NN search

Situation: n data points in \mathbb{R}^d.

1. Storage is $O(nd)$
2. Time to compute distance is $O(d)$ for ℓ_p norms
3. Geometry
 It is possible to have $2^{O(d)}$ points that are roughly equidistant from each other.

Current methods for fast exact NN search have time complexity proportional to 2^d and $\log n$.
Postscript: useful families of distance functions

1. ℓ_p norms
2. Metric spaces
Measuring distance in \mathbb{R}^m

Usual choice: \textbf{Euclidean distance}:

$$\|x - z\|_2 = \sqrt{\sum_{i=1}^{m} (x_i - z_i)^2}.$$
Measuring distance in \mathbb{R}^m

Usual choice: **Euclidean distance**:

$$\|x - z\|_2 = \sqrt{\sum_{i=1}^{m} (x_i - z_i)^2}.$$

For $p \geq 1$, here is ℓ_p distance:

$$\|x - z\|_p = \left(\sum_{i=1}^{m} |x_i - z_i|^p\right)^{1/p}$$

- $p = 2$: Euclidean distance
- ℓ_1 distance: $\|x - z\|_1 = \sum_{i=1}^{m} |x_i - z_i|$
- ℓ_∞ distance: $\|x - z\|_\infty = \max_i |x_i - z_i|$
Example 1

Consider the all-ones vector \((1, 1, \ldots, 1)\) in \(\mathbb{R}^d\).
What are its \(\ell_2\), \(\ell_1\), and \(\ell_\infty\) length?
Example 2

In \mathbb{R}^2, draw all points with:

1. ℓ_2 length 1
2. ℓ_1 length 1
3. ℓ_∞ length 1
Metric spaces

Let \mathcal{X} be the space in which data lie.

A distance function $d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **metric** if it satisfies these properties:

- $d(x, y) \geq 0$ (nonnegativity)
- $d(x, y) = 0$ if and only if $x = y$
- $d(x, y) = d(y, x)$ (symmetry)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality)
Example 1

\[\mathcal{X} = \mathbb{R}^m \] and \(d(x, y) = \|x - y\|_p \)

Check:

- \(d(x, y) \geq 0 \) (nonnegativity)
- \(d(x, y) = 0 \) if and only if \(x = y \)
- \(d(x, y) = d(y, x) \) (symmetry)
- \(d(x, z) \leq d(x, y) + d(y, z) \) (triangle inequality)
Example 2

\[\mathcal{X} = \{ \text{strings over some alphabet} \} \text{ and } d = \text{edit distance} \]

Check:

- \(d(x, y) \geq 0 \) (nonnegativity)
- \(d(x, y) = 0 \) if and only if \(x = y \)
- \(d(x, y) = d(y, x) \) (symmetry)
- \(d(x, z) \leq d(x, y) + d(y, z) \) (triangle inequality)
A non-metric distance function

Let p, q be probability distributions on some set \mathcal{X}.

The Kullback-Leibler divergence or relative entropy between p, q is:

$$d(p, q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$
