1 Small depth classes

The class NC (Nick’s class) corresponds to boolean circuits with poly-logarithmic depth and fan-in two. The class AC (Alternating class) corresponds to boolean circuits with poly-logarithmic depth and large fan-in. They both capture computation which is highly parallel - can be computed in a poly-logarithmic number of “rounds” using many parallel processors.

Definition 1.1 (NC). The class NC^i is the class of circuits with AND/OR/NOT gates of fan-in 2 and depth $O(\log(n)^i)$. We define $NC = \bigcup_{i \geq 1} NC^i$.

Definition 1.2 (AC). The class AC^i is the class of circuits with AND/OR/NOT gates of unbounded fan-in gates and depth $O(\log(n)^i)$.

We have the containment $NC^i \subset AC^i \subset NC^{i+1}$. We suspect that NC \neq P but cannot even separate NC from PH.

The class NC0 corresponds to functions which depend just on a constant number of input bits. The class AC0 is more interesting and can compute nontrivial functions, e.g approximate majority. We don’t know how to show NC$^1 \neq P$. However, we can prove lower bounds for NC0 and AC0, which correspond to constant depth circuits. The canonical hard function we will choose is PARITY, which computes if the sum of the bits is even or odd. It is simple to see that PARITY can be computed by a circuit of depth $O(\log n)$ and fan-in two, namely that PARITY $\in NC^1$. We will prove first that PARITY is not in NC0, and then develop the techniques to prove that also it is not in AC0.

Theorem 1.3. PARITY is not in NC0.

Proof. An NC0 circuit of depth d can read at most 2^d bits, and so for $d = O(1)$ cannot compute PARITY. \qed

The main theorem we will prove here is that PARITY cannot be computed in AC0.

Theorem 1.4. PARITY is not in AC0.
More specifically, we will show that any constant depth circuit, of any fan-in, the computes parity, needs to have an exponential size. The first super-polynomial bound of this type was proved by Furst, Saxe and Sipser [1], and this was improved to an exponential lower bound by Yao [6] and then improved to an optimal bound by H˚astad [2]. The proof we will follow here is by Razborov [3] and Smolensky [5], which allows to prove that small circuits cannot even approximate PARITY. However, to stay focused, we will restrict our attention to proving lower bounds on circuits which compute PARITY exactly.

As a warm up, we first prove a lower bound for depth-2 circuits with unbounded fan-in.

Theorem 1.5. A depth-2 circuit computing PARITY must have size $\Omega(2^n)$.

Proof. A depth-2 circuit is essentially either a DNF or CNF. Below, we consider the case of a DNF, where the other cases are analogous.

Let $\varphi = D_1 \lor D_2 \ldots \lor D_m$ be a DNF computing the PARITY function. Let us first argue that all the terms must have n variables. Assume some term D_i has less than n variables, and let x_j be a variable not participating in D_o. We can find an assignment to the variables \{ $x_i : i \neq j$ \} which make D_i true. Let us now set the variables outside D_i so that the parity will be 1 (false). Then we get that $\varphi(x) \neq PARITY(x)$ on this input.

So, we got that all terms have exactly n variables, hence they evaluate to 1 on a single input and 0 on the remaining inputs. As PARITY has $2^n - 1$ inputs where it evaluates to 1, φ must have at least 2^{n-1} terms.

The main tool to prove that $\text{PARITY} \notin \text{AC}^0$ is polynomials, which we describe next.

2 Polynomials

A real-valued multilinear polynomial (which we simply call a polynomial from now on) is an expression of the form

$$p(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} p_S \prod_{i \in S} x_i,$$

with coefficients $p_S \in \mathbb{R}$. Any boolean function has a unique expression as a polynomial. In fact, this holds even for functions on boolean inputs with a real-valued output.

Claim 2.1. Any function $f : \{0, 1\}^n \rightarrow \mathbb{R}$ has a unique polynomial computing it.

Proof. Let $\mathcal{H} = \{ h : \{0, 1\}^n \rightarrow \mathbb{R} \}$ denote the vector space over \mathbb{R} of real-valued functions on boolean inputs. Its dimension is $\dim(\mathcal{H}) = 2^n$. Any polynomial $p(x)$ defines a real-valued function on $\{0, 1\}^n$. Let \mathcal{P} denote the vector space of functions defined by polynomials, where clearly $\mathcal{P} \subset \mathcal{H}$. The claim would follow by showing that in fact $\mathcal{P} = \mathcal{H}$. In order to show that, we will show that $\dim(\mathcal{P}) = 2^n$.

The space \mathcal{P} is spanned by the 2^n monomial functions $M_S(x) = \prod_{i \in S} x_i$ for $S \subseteq [n]$. We will show that they form a basis, which will establish the dimension. Assume towards a contradiction that they are linearly dependent. This linear dependency forms a nonzero
polynomial \(p(x) = \sum p_S M_S(x) \) which evaluates to 0 on all boolean inputs. We will prove that this is impossible, unless all the coefficients \(p_S = 0 \).

Assume now, and let \(T \) be minimal such that \(p_T \neq 0 \). Consider the input \(x = 1_T \), namely \(x_i = 1 \) if \(i \in T \) and \(x_i = 0 \) if \(i \notin T \). Then
\[
p(1_T) = \sum_S p_S \prod_{i \in S}(1_T)_i = \sum_S p_S 1_T \subseteq S = p_S \neq 0.
\]
Thus we get that \(p \) cannot map all boolean inputs to zero, unless it is the zero polynomial.

The degree of a polynomial \(p \) is the maximal \(|S| \) such that \(p_S \neq 0 \). Namely, the largest number of variables in a monomial in \(p \). We denote by \(\mathcal{P}_k \) the family of all functions computed by polynomials of degree at most \(k \),
\[
\mathcal{P}_k = \{p(x) : \deg(p) \leq k\}.
\]

Sometimes it will be convenient to represent bits as \(\{-1, 1\} \) instead of \(\{0, 1\} \). Note that we can always do this change by replacing \(x_i \in \{0, 1\} \) with \(1 - 2x_i \in \{-1, 1\} \), and that this transformation does not change the degree of the polynomial.

3 AC⁰ circuits can be approximated by low-degree polynomials

As a stepping stone towards proving that PARITY is not in AC⁰, we show that any function computed by an AC⁰ circuit can be well-approximated by a low-degree polynomial. In general, we say that a polynomial \(p \) approximates a boolean function \(f \) with error \(\varepsilon \) if
\[
\Pr_x [p(x) \neq f(x)] \leq \varepsilon.
\]
Below, when we measure the number of gates in a circuit, we always include the inputs. Hence an \(n \)-input circuit always has at least \(n \) gates.

Theorem 3.1. Let \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) be a boolean function computed by an AC⁰ circuit with depth \(d \) and \(s \) gates. Then for any \(\varepsilon > 0 \) there exists a polynomial \(p \) of degree \((c \log(s/\varepsilon))^{2d} \) that approximates \(f \) with error \(\varepsilon \), where \(c > 0 \) is some absolute constant.

We first prove the following lemma handling a single AND gate. To recall, AND : \(\{0, 1\}^n \rightarrow \{0, 1\} \) maps the input \(1^n \) to 1, and all other inputs to 0.

Lemma 3.2. Let \(n \in \mathbb{N}, \varepsilon > 0 \). There exists a distribution \(\mathcal{D} \) over polynomials \(p \) of degree \(k = O(\log(n) \log(1/\varepsilon)) \) such that the following holds. For any \(x \in \{0, 1\}^n \),
\[
\Pr_{p \sim \mathcal{D}} [p(x) = \text{AND}(x)] \geq 1 - \varepsilon.
\]
Proof. Let \(1 \leq t \leq \log n\) be chosen uniformly. Let \(A \subseteq [n]\) be a random set of size \(2^t\). Define the polynomial
\[
p_A(x) = \left(\sum_{i \in A} x_i\right) - |A| + 1.
\]
Observe that \(p_A(1^n) = 1\) holds for any \(A\). We will show that if \(x \in \{0,1\}^n \setminus 1^n\) then
\[
\Pr_A[p_A(x) = 0] = \Omega(1/\log n).
\]

To see that, assume the number of zeros in \(x\) is between \(2^a\) and \(2^a+1\) for some \(0 \leq a \leq \log n - a\), which happens with probability \(\frac{1}{\log n}\). In such a case, \(|A| = n/2^a\) and the average number of zeros in \(A\) is \(1 \leq c \leq 2\). Moreover, with constant probability there is exactly one zero in \(A\), in which case \(p_A(x) = 0\).

To conclude, we construct the distribution \(D\). Sample \(A_1, \ldots, A_k\) as above independently for \(k = O(\log n \cdot \log(1/\varepsilon))\), and set
\[
p(x) = p_{A_1}(x) \ldots p_{A_k}(x).
\]
Then we have that:

1. \(p(1^n) = 1\) holds with probability one.
2. If \(x \in \{0,1\}^n \setminus 1^n\) then \(\Pr[p_A(x) = 0] \geq 1 - \varepsilon\) since
\[
\Pr[p_A(x) \neq 0] = \prod_{i=1}^k \Pr[p_{A_i}(x) \neq 0] = (1 - O(1/\log n))^{k \log n \cdot \log(1/\varepsilon)} \leq \varepsilon.
\]

A similar lemma holds for OR gates. NOT gates clearly can be computed by the polynomial \(p(x) = 1 - x\). We can now prove Theorem 3.1.

Proof of Theorem 3.1. Let \(C\) be a circuit of depth \(d\) and size \(s\) that computes the function \(f\). Let \(v_1, \ldots, v_s\) denote the nodes of \(C\), such that \(v_i = x_i\) for \(i = 1, \ldots, n\), and such that for \(i > n\) the inputs to \(v_i\) are in \(\{v_j : j < i\}\). Given an input \(x\) let \(v_i(x)\) denote the value compute at the gate \(v_i\) on input \(x\), where \(f(x) = C(x) = v_s(x)\). We denote by \(I_i\) the set of inputs to \(v_i\), and by \(g_i \in \{\text{AND, OR, NOT}\}\) the function computed at the node, so that
\[
v_i(x) = g_i(v_j(x) : j \in I_i).
\]

Set \(\delta = \varepsilon/s\). As a first step, apply Lemma 3.2 or the analogous lemmas for OR or NOT gates to each gate in the circuit. For a gate \(i\) with \(i > n\), we get a distribution \(D_i\) of polynomials \(p_i\) of degree \(k = O(\log s \cdot \log(1/\delta)) = O(\log^2(s/\varepsilon))\), such that for every input \(x\) it holds that
\[
\Pr_{p_i \sim D_i} [v_i(x) \neq p_i(v_j(x) : j \in I_i)] \leq \delta.
\]
By the union bound, with probability $1 - \delta s = 1 - \varepsilon$ all the polynomials compute the correct value. Let $p(x)$ be the composition of all these polynomials which compute $f(x) = v_s(x)$, where we also use the base case $v_i(x) = x_i$ for $i = 1, \ldots, n$. It gives a distribution \mathcal{D} of polynomial p of degree k^d, which satisfy

$$
Pr_{p \sim \mathcal{D}}[f(x) \neq p(x)] \leq \varepsilon.
$$

As this holds for any input x, we obtain by an averaging argument that

$$
Pr_{p \sim \mathcal{D}, x \in \{0, 1\}^n}[f(x) \neq p(x)] \leq \varepsilon.
$$

Thus there must be p^* in the support of \mathcal{D} such that

$$
Pr_{x \in \{0, 1\}^n}[f(x) \neq p^*(x)] \leq \varepsilon.
$$

In particular, p^* is a polynomial of degree at most $k^d = (c \log(s/\varepsilon))^{2d}$ for some constant $c > 0$.

4 PARITY cannot be approximated by low-degree polynomials

We already saw that any function computed by a small AC^0 circuit can be approximated by a low-degree polynomial. To prove that PARITY cannot be computed by a small AC^0 circuit, we will show that PARITY cannot be approximated by a low-degree polynomial. This allows to prove that PARITY cannot even be approximated by small AC^0 circuits.

Theorem 4.1. Let $p(x)$ be an n-variate polynomial of degree k. Then

$$
Pr_x[p(x) = PARITY(x)] \leq \frac{1}{2} + O\left(\frac{k}{\sqrt{n}}\right).
$$

Before proving Theorem 4.1, we show how it implies Theorem 1.4, namely that PARITY is not in AC^0. Specifically, we obtain the following corollary.

Corollary 4.2. Assume that the n-bit PARITY function is computed by an AC^0 circuit with depth d and s gates. Then $s \geq 2^{\Omega(n^{1/4d})}$.

Proof. Apply Theorem 3.1 with $\varepsilon = 0.1$. There exists a polynomial $p(x)$ of degree $k = (c \log(s))^{2d}$ that approximates PARITY with error 0.1. Theorem 4.1 shows that this requires

$k = \Omega(\sqrt{n})$. Hence $\log s = \Omega(n^{1/4d})$. $
$

Proof of Theorem 4.1. It will be convenient to view p as a polynomial over $\{-1, 1\}^n$. Note that in this basis,

$$
PARITY(x_1, \ldots, x_n) = \prod_{i=1}^n x_i.
$$
Let A denote the set of inputs on which p agrees with PARITY, namely

$$A = \{ x \in \{-1, 1\}^n : p(x) = \text{PARITY}(x) \}.$$

Let $V = \{ f : A \to \mathbb{R} \}$ denote the vector space of functions from A to \mathbb{R}. Its dimension is $\dim(V) = A$. We will show that A is small by finding a small basis for V. We already know that any function $f : \{-1, 1\}^n \to \mathbb{R}$ can be written as a polynomial

$$f(x) = \sum_{S \subseteq [n]} f_S \prod_{i \in S} x_i.$$

The crucial observation is that if $x \in A$ we can replace $\prod_{i=1}^n x_i$ with the low degree polynomial $p(x)$. Moreover, if $|S| \geq (n+k)/2$ then for any $x \in A$:

$$\prod_{i \in S} x_i = \prod_{i \in S} x_i \cdot \prod_{i=1}^n x_i \cdot p(x) = \prod_{i \in [n] \setminus S} x_i \cdot p(x),$$

which is a polynomial of degree $n - |S| + k \leq (n+k)/2$. Hence, all functions $f : A \to \mathbb{R}$ can be written as polynomials of degree at most $(n+k)/2$. The dimension of this vector space is the number of monomials of degree at most $(n+k)/2$, which is

$$\sum_{i=0}^{(n+k)/2} \binom{n}{i} = \left(1 + O\left(\frac{k}{\sqrt{n}}\right)\right) \cdot 2^n.$$

Thus we obtain that

$$\Pr[p(x) = \text{PARITY}(x)] = 2^{-n}|A| = \frac{1}{2} + O\left(\frac{k}{\sqrt{n}}\right).$$

5 Natural proofs

Following the sequence of lower bounds against AC^0, there was a belief in the early 1990s that similar combinatorial or algebraic techniques can possibly prove lower bounds against P/poly, and in particular would prove super-polynomial lower bounds against some natural problems. However, in a landmark work in 1994, Razborov and Rudich [4] showed that all the known lower bound techniques (including the ones we discussed here) fall into a framework that they called “natural proofs”. They showed that if we believe that cryptography is secure, then such proofs can never prove lower bounds against P/poly.

At a high level, a lower bound proof is “natural” if it identifies a property that simple functions have, but random functions do not. Here, by simple functions we mean ones computed by small circuits, say. Then to prove that a hard function is not computed by a small circuit (it is not simple), one only needs to verify that it lacks the above property. We define natural proofs for general circuit classes C, for example NC^0, AC^0 or P/poly.

Definition 5.1. Let C be a circuit class. A natural property against C is a subset P of the functions $f : \{0,1\}^* \to \{0,1\}$ that satisfy the following requirements:

- **Usefulness:** If $f \in C$ then $f \not\in P$.
- **Largeness:** For large n, a random function $f : \{0,1\}^n \to \{0,1\}$ is in P with high probability.
- **Constructivity:** Given the truth table of a function $f : \{0,1\}^n \to \{0,1\}$ we can test if $f \in P$ in time $2^{O(n)}$.

Let us first prove that if we believe cryptography, then there is no natural property against $P/poly$. Concretely, we will rely on the assumption that there are hard one-way functions. Formally, we assume that there are functions $f : \{0,1\}^n \to \{0,1\}$ which can be computed in polynomial time, but that given only query access to f, they cannot be distinguished from completely random functions in time less than 2^{n^c} for some $c > 0$.

Theorem 5.2. Assume that there exists a natural property against $P/poly$. Then for any $\varepsilon > 0$ and large enough n, any function $f : \{0,1\}^n \to \{0,1\}$ computed in polynomial time can be distinguished from a random function in time 2^{n^ε}.

Proof. Let $f : \{0,1\}^n \to \{0,1\}$ be a function computed in $P/poly$. Pick $\varepsilon > 0$ and set $k = n^\varepsilon$. Let $g : \{0,1\}^k \to \{0,1\}$ the restriction of f to the first k bits of input, by fixing the remaining $n-k$ bits to zero. Note that g is also computed in $P/poly$. We can check if $g \in P$ in time $2^{O(k)}$. By our assumption, it does not have the property. On the other hand, if f was a random function on n bits, then g would have been a random function on k bits, and hence in this case $g \in P$ with high probability. Thus we can differentiate between a poly-time computable f and a random f in time $2^{O(n^\varepsilon)}$ for any $\varepsilon > 0$. \qed

Let us next consider the proof we saw that PARITY is not in AC^0, and check if it is a natural proof. The first approach is to use Theorem 3.1 directly, namely that any AC^0 circuit can be approximated by a polynomial of poly-logarithmic degree. That is, for if we consider functions $f : \{0,1\}^n \to \{0,1\}$ then define

$$P_1 = \{ f : f \text{ cannot be approximated by a polynomial} \}
$$

$$\text{of degree } (\log n)^O(1) \text{ up to error } 0.1 \}$$

Note that P_1 is useful (AC^0 functions do not have the property) and large (a random function is likely to have the property). However, it is not clear why it is constructive - the natural way to test if a function f can be approximated by a polynomial of degree $k = (\log n)^c$ is to test all such polynomials, which will take too much time - exponential in the number of possible monomials, which is about n^k. To recall, for constructivity we want to allow runtime singly exponential in n.

The way to make it constructive is to inspect the proof more carefully. First, it is not hard to see that any function $F : \{0,1\}^n \to \mathbb{R}$ can be decomposed as

$$F(x) = p_1(x) + p_2(x) \cdot \text{PARITY}(x)$$

7
where p_1, p_2 are polynomials of degree $\leq n/2$. In that sense, PARITY is “universal”. We would define the property that a function is universal as our natural property:

$$\mathcal{P}_2 = \{ f : \text{any function } F : \{0,1\}^n \to \mathbb{R} \text{ can be expressed as } F = p_1 + p_2 \cdot f \text{ where } p_1, p_2 \text{ are polynomials of degree } \leq n/2 \}$$

We claim that \mathcal{P}_2 is useful against AC^0: if $f \in \text{AC}^0$ then it can be approximated by a polynomial of degree $k = (\log n)^{O(1)}$. Hence if $F = p_1 + p_2 f$ then F can be approximated by a polynomial of degree $n/2 + (\log n)^{O(1)}$, which is not true for all functions. This implies that if $f \in \text{AC}^0$ then $f \notin \mathcal{P}_2$. In addition, \mathcal{P}_2 is constructive, as given the truth table of f one can check if $f \in \mathcal{P}_2$ by solving a linear program of size $2^{O(n)}$, which can be done in time $2^{O(n)}$. What is now unclear is whether \mathcal{P}_2 is large. It seems to be true, but it is unclear how to prove it. To overcome this, we will instead consider another property:

$$\mathcal{P}_3 = \{ f : \text{the linear space of } F : \{0,1\}^n \to \mathbb{R} \text{ that can be expressed as } F = p_1 + p_2 \cdot f \text{ where } p_1, p_2 \text{ are polynomials of degree } \leq n/2 \text{ has dimension } \geq 0.9n \}$$

This refined definition can be shown to still be useful against AC^0 and constructive, and in addition it is also large.

References

