Problem 1: finding a simple path
Let \(G=(V,E) \) be an undirected graph with \(|V|=n\), and fix \(k>0 \). We saw in class an algorithm based on coloring coding, that checks if \(G \) has a simple path of length \(k \). The runtime of the algorithm was \(\text{poly}(2^k,n) \).

Design a randomized algorithm that finds a simple path of length \(k \) whenever one exists. The runtime should still be \(\text{poly}(2^k,n) \), and the algorithm should succeed with probability at least 50%, say.

Problem 2: finding a bi-partite matching
Let \(G=(U,V,E) \) be a bi-partite graph with \(|U|=|V|=n\). We saw in class an algorithm based on Polynomial Identity Testing (PIT) that decides in poly-time whether \(G \) contains a bi-partite matching or not.

Design a algorithm that (with high probability) finds a bi-partite matching whenever one exists. The runtime should still be \(\text{poly}(n) \), and the algorithm should succeed with probability at least 50%, say.

Problem 3: Reliably and Probably Useful (RPU) algorithms
We proved in class that \(\text{ZPP} = \text{RP} \cap \text{co-RP} \). Here, we will define another model of randomization called RPU (Reliably and Probably Useful), which you will need to prove is also equivalent to ZPP.

An RPU algorithm is a randomized algorithm \(M \), that, given an input \(x \in \{0,1\}^* \), outputs an answer \(M(x) \in \{0,1,?\} \). Here \(? \) means “I don’t know”. It computes a language \(L \subseteq \{0,1\}^* \) if:

1. It is reliable: when the algorithm makes a prediction (outputs 0 or 1) it has to be correct. Namely, if \(x \in L \) then \(\Pr[M(x) = 0] = 0 \) and if \(x \notin L \) then \(\Pr[M(x) = 1] = 0 \).
2. It is useful: it makes a prediction with some probability on each input. Concretely, for any input \(x \), \(\Pr[M(x) =?] \leq 1/2 \).

Prove that the class of languages that can be computed by an RPU algorithm running in poly-time is the same as ZPP.
Problem 4: PSPACE does not have fixed polynomial size circuits

Recall that

- \(PSPACE = \bigcup_{k \geq 1} SPACE(n^k) \) is the class of languages computable in polynomial space
- \(P/poly = \bigcup_{k \geq 1} SIZE(n^k) \) is the class of languages computable by polynomial size circuits

We believe that PSPACE is not a subset of P/poly, but this is open. In this question you will prove a weaker statement: PSPACE is not a subset of \(\text{SIZE}(n^k) \) for any fixed \(k \).

Fix \(k \geq 1 \). Your goal is to construct a language \(L_k \subset \{0,1\}^* \) that satisfies two properties:

(a) \(L_k \) can be decided in PSPACE. In fact, it is decided in \(SPACE(n^t) \) for some \(t = l(k) \).

(b) There exists \(n_0 = n_0(k) \), such that for all \(n > n_0 \) the language \(L_k \cap \{0,1\}^n \) cannot be computed by boolean circuits of size \(n^k \).

Steps:

1. Fix an input length \(n \). Let \(F_n \) be the class of functions \(f: \{0,1\}^n \rightarrow \{0,1\} \) which can be computed by a circuit of size \(n^k \). Prove that \(|F_n| \leq 2^m \) for \(m = O(n^{k+1}) \).

2. Let \(t \geq 1 \) and fix distinct inputs \(x_1, \ldots, x_t \in \{0,1\}^n \). Prove that there exist values \(y_1, \ldots, y_t \in \{0,1\} \) such that the number of functions \(f \in F_n \) that satisfy \(f(x_i) = y_i \) is at most \(2^{m-t} \).

3. Argue that for \(t = m+1 \), there are inputs \(x_1, \ldots, x_t \in \{0,1\}^n \) and values \(y_1, \ldots, y_t \in \{0,1\} \) such that any function \(f: \{0,1\}^n \rightarrow \{0,1\} \) which satisfies \(f(x_i) = y_i \) must be outside \(F_n \).

4. Prove that given an input length \(n \), you can find such inputs and outputs in space \(\text{poly}(m) \)

5. Complete the proof - describe \(L_k \) and prove its properties.