CSE 291: Communication Complexity
Homework 1, due January 28, 2019

Question 1 (Fooling sets). Let $f : X \times Y \rightarrow Z$. Recall the definition of a fooling set: a set $S \subset X \times Y$ is a fooling set if there exists $z \in Z$ such that

- $f(x, y) = z$ for all $(x, y) \in S$.
- If $(x_1, y_1), (x_2, y_2) \in S$ then either $f(x_1, y_2) \neq z$ or $f(x_2, y_1) \neq z$.

(a) Prove that if S is a fooling set for f then $D(f) \geq \log |S|$.

(b) Assume that f is a partial function. Extend the definition of a fooling set to partial functions, and prove the same bound.

Question 2 (Inner product). The inner product function $IP : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$ is defined as $IP(x, y) = \langle x, y \rangle \mod 2$. Let $M = M_{IP}$ be its corresponding $2^n \times 2^n$ matrix.

(a) Prove that the rank of M over \mathbb{F}_2 equals n.

(b) Prove that the rank of M over the reals is $\Omega(2^n)$ (hint: consider the function $g(x) = (-1)^{f(x)}$, and compute $(M_g)^2$).

(c) Conclude that the inner product function requires $\Omega(n)$ deterministic communication complexity.

(d) What is the size of the largest monochromatic rectangle in IP? use this to give an alternative proof to the deterministic lower bound.
Question 3 (Partition vs communication). Let \(f : X \times Y \to Z \). We are interested in the relation between two measures:

- The deterministic communication complexity of \(f \), namely \(D(f) \).
- The partition number of \(f \), denoted \(P(f) \), which is the minimal number \(N \) such that \(M_f \) can be partitioned into \(N \) monochromatic rectangles.

All logarithms below are in base two. We will prove that

\[
\log P(f) \leq D(f) \leq O(\log^2 P(f)).
\]

(a) Prove that \(\log P(f) \leq D(f) \).

Assume \(P(f) = N \) and consider a partition of \(M_f \) into monochromatic rectangles \(R_1, \ldots, R_N \) where \(R_i = A_i \times B_i \). Define a graph \(G = (V, E) \) as follows. The vertices are \(V = \{1, \ldots, N\} \). There is an edge between nodes \(i, j \) if the rectangles \(R_i, R_j \) have a row in common. That is, \((i, j) \in E \) if \(A_i \cap A_j \neq \emptyset \).

(b) Given a row \(x \) of \(M_f \), let \(C_x = \{i \in [N] : x \in A_i\} \). Prove that \(C_x \) is a clique in \(G \).

(c) Given a column \(y \) of \(M_f \), let \(I_y = \{i \in [N] : y \in B_i\} \). Prove that \(I_y \) is an independent set in \(G \).

(d) Use the Clique-vs-Independent-Set protocol of Yannakakis to deduce that \(D(f) \leq O(\log^2 P(f)) \).

Question 4 (Monotone Karchmer-Wigderson games). Let \(f : \{0,1\}^n \to \{0,1\} \) be a monotone boolean function. That is, for any \(x, y \in \{0,1\}^n \), if \(x_i \leq y_i \) for all \(i \in [n] \) then \(f(x) \leq f(y) \).

Any monotone function can be computed by a monotone formula with only AND and OR gates (that is, no negations are allowed). Denote by mon-depth(\(f \)) the minimum depth of a monotone formula computing \(f \).

The monotone Karchmer-Wigderson game for \(f \), denoted mon-KW_\(f \), is the following game: Alice gets an input \(x \) where \(f(x) = 0 \), Bob gets an input \(y \) where \(f(y) = 1 \). Their goal is to find \(i \in [n] \) such that \(x_i = 0, y_i = 1 \).

(a) Prove that such \(i \) always exists.

(b) Prove that \(\text{mon-depth}(f) = D(\text{mon-KW}_f) \).