
CSE200 Lecture Notes – Coping with NP-completeness

Lecture by Russell Impagliazzo
Notes by Jiawei Gao

February 16, 2016

1 Coping with NP-completeness (and other intractability)

Say we have an optimization problem. To put the problem in P, an algorithm must:

• On every input, the running time must be a fixed polynomial.
• On every input, it must return the optimal solution for that input.

If an algorithm is not in P, then we have the negation of the above:

• Either on some inputs, the running time is not polynomial,
• Or on some inputs, the solution is exactly optimal.

If P1 is polynomial-time reducible to P2, it means hard instances of P1 can be reduced to
problem P2, easy instances of P1 can be reduced to problem P2, and anything in the middle can
also be reduced to problem P2. Statement “P2 is NP-complete” means P2 has hard instances,
but does not mean every instances of P2 is hard.

From a real-life problem (described in real-life terms) we want to solve, we often formalize
the problem, specify what are the instances, solution and objective.

What we are doing is essentially a reduction from real-life problem to the formalized prob-
lem. If the formalized problem turns out to be easy, then it’s good. On the other hand, if the
formalized problem is proved to be hard, then it does not mean the real-life problems are hard
– perhaps the hard instances are not instances of the real-life problem.

Things I can do if my problem turns out to be NP-complete:

(A) Do I really need to solve that problem? Sometimes we just need to solve a restricted
version of the problem that includes real-world instances.

Example 1: max independent set for interval graphs ≤ max independent set for general
graphs. The former is in P and the latter is NP-complete.
Example 2: max independent unit disks ≤ max independent set for general graphs. This
time the left hand side is NP-complete.

(B) Is exponential-time algorithms OK for my instances? Exponential-time does not mean
they are slow. It means they don’t scale well. If the instances are small in size, then exp-
time is acceptable. Possible techniques we can use include:

1

CSE 200 Winter 2016

1. Improved exponential-time algorithms (exponential, but already faster than exhaus-
tive search.)

Example 1: Best known algorithm for independent set is about O(20.25n).
Example 2: Unit disk independent set of size k takes time O(n

p
k).

2. Multi-parameter analysis of algorithms (or Fixed-parameter tractability, if the param-
eters are very small)
If the problem is exponentially hard in small parameters, it’s better than exponential in
large parameters.

3. Exponential-time in worst case, but not always

Examples: SAT-solver and algorithm for integer linear programming

(C) Is non-optimality OK?
A fit person and a non-fit person are being chased by a bear. The fit person says:“It’s worth
it after spending so much time in the gym.” The non-fit person says:“Why? you won’t
outrun the bear.” The fit person says:“I don’t need to outrun the bear. I just need to outrun
you.”
It’s OK if our algorithm just outrun other algorithms.

1. Approximation schema: 21/εpoly(n) time, (1+ ε)-approximation.
Example: Knapsack problem.

2. Fixed constant approximation: (c ·OPT) solutions, where c is constant.

3. Just heuristic performance. (Other algorithms are even worse.)
Randomized algorithms are in this category.

(D) Average-case analysis

Example: Quicksort (non-randomized) runs worst when the input is sorted or nearly sorted.
But sorted or nearly sorted input is common in real-world.

2 Polynomial Hierarchy

Circuit Minimization Problem

• Input: boolean circuit C on input x1, . . . , xn.
• Solution: boolean circuitC ′ on input x1, . . . , xn.
• Constraint: For all x1, . . . , xn, C(x1, . . . , xn) = C ′(x1, . . . , xn).
• Objective: minimize |C ′|.

Circuit Minimization is an optimization problem, but it is not in OptP.

If P= NP then Circuit Minimization ∈ P
Negating the constraint, we get ∃x , C ′(x)⊕ C(x) = 1. By treating C ′(x)⊕ C(x) as a large

circuit, the negation of the constraint is a Circuit SAT problem. Using the previous conclusion
“Circuit SAT ∈ NP”, if P= NP, Circuit SAT ∈ P. Because P is closed under complement, ¬Circuit
SAT ∈ P. Thus Circuit Min ∈ OptP= NP= P.

2

CSE 200 Winter 2016

Definition 2.1. Let L be a language.

• PL is the class of problems poly-time Turing reducible to L.
• NPL is the class of problems with witnesses verifiable in P L .

Definition 2.2. For a class of problem C , PC =
⋃

L∈C PL .

Because SAT is complete in NP, we get PNP = PSAT.

Proposition 2.1. If C1 = C2, then for any class C3, CC1
3 = CC2

3 . But it might not be true that

for any class C3, C C3
1 =C C3

2 .

Next we define classes ΣP
i by induction.

Definition 2.3.

• ΣP
1 = NP.

• ΣP
i+1 = NPΣP

1 .

Proposition 2.2. Circuit Min ∈ PNPNP
.

3

