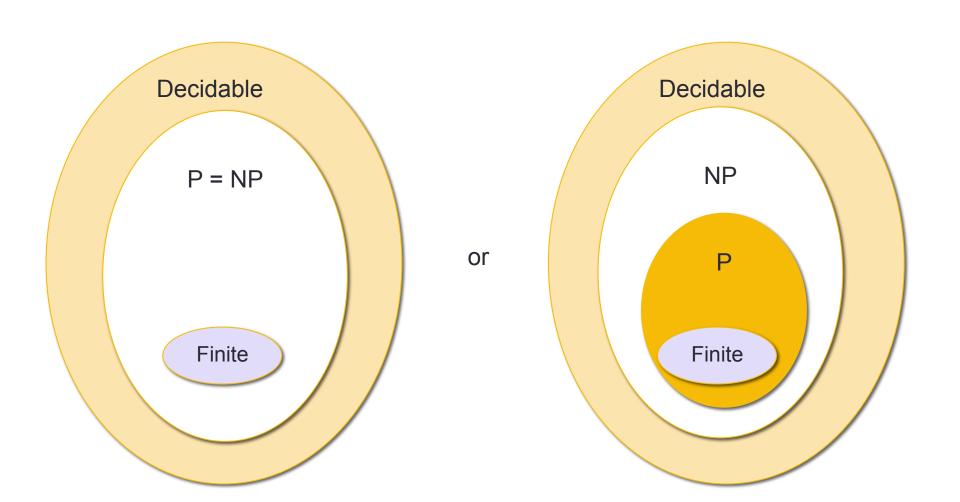
CSE 105 THEORY OF COMPUTATION

"Winter" 2018


http://cseweb.ucsd.edu/classes/wi18/cse105-ab/

Today's learning goals Sipser Ch 7

- Define NP-completeness
- Give examples of NP-complete problems
- Use polynomial-time reduction to prove NP-completeness

Section 7.4, 7.5: NP-completeness

Start review!

P vs. NP

Problems in P	Problems in NP
(Membership in any) regular language	Any problem in P
(Membership in any) CFL	HAMPATH
PATH	CLIQUE
A _{DFA}	VERTEX-COVER
E _{DFA}	TSP
EQ _{DFA}	SAT
Addition, multiplication of integers	

How to answer P = NP?

Are there **hardest** NP problems?

Reductions to the rescue

Sipser p. 299-305

1970s Stephen Cook and Leonid Levin indepdendently and in parallel lay foundations of **NP-completeness**

Definition A language B is **NP-complete** if (1) it is in NP and (2) every A in NP is polynomial-time reducible to it.

Reductions to the rescue

Sipser p. 299-305

1970s Stephen Cook and Leonid Levin indepdendently and in parallel lay foundations of **NP-completeness**

Definition A language B is **NP-complete** if (1) it is in NP and (2) every A in NP is polynomial-time reducible to it.

Consequence If an NP-complete problem has a polynomial time solution then **all** NP problems are polynomial time solvable.

Reductions to

1970s Stephen Cook and parallel lay foundations of

Definition A language B (2) every A in NP is polyr

What would prove that P = NP?

- A. Showing that a problem solvable by brute-force methods has a nondeterministic solution.
- B. Showing that there are two distinct NPcomplete problems.
- C. Finding a polynomial time solution for an NP-complete problem.
- D. Proving that an NP-complete problem is not solvable in polynomial time.
- E. I don't know

Consequence If an NP-complete problem has a polynomial time solution then **all** NP problems are polynomial time solvable

3-SAT

Cook-Levin Theorem: 3-SAT is NP-complete.

$$(x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor y \lor z) \land (x \lor y \lor z)$$

Are other problems NP complete?

To prove that X is NP-complete

From scratch: Prove it is NP, and that all NP problems are polynomial-time reducible to it.

Using reduction: Show that a (known-to-be) NP complete problem reduces to it.

3SAT polynomial-time reduces to CLIQUE

Sipser p. 302

Given: Boolean formula in CNF with exactly 3 literals/clause

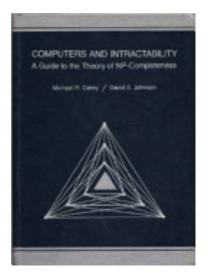
- AND of ORs - args in OR clauses: var or negated var

Desired Answer: Yes if satisfiable; No if unsatisfiable

Instead transform formula to graph so that graph has clique iff original formula is satisfiable

3SAT polynomial-time reduces to CLIQUE

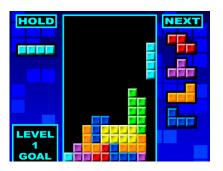
Transform 3-CNF formula with k clauses to graph G


- vertices are the literals in each clause
- edges between all vertices except
 - two literals in the same clause
 - literals that are negations of one another

Claim: formula is satisfiable iff G has k-clique

3-SAT to Clique example

$$(x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor y \lor z) \land (x \lor y \lor z)$$


Are other problems NP-complete?

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Next time

Review for final exam

Please fill out CAPE, TA evaluations.

Seat charts for final exam on Piazza.

Lecture B: PCYNH109