Pseudo-\(\epsilon\)-Differential Privacy for The \textit{Posturizer}

An Exploration into Privacy Mechanisms with a Custom Posture Monitoring Device

Michael Ostertag
CSE 237A
Winter 2016
The Three-Fold Motivation

1) Develop a sensing platform for posture monitoring
 • Growing problem in an increasingly sedentary world
 • Quantified self movement is a market hungry for new products

2) Utilize platform to experiment with low-computational privacy
 • By 2020, 50 billion integrated smart devices with privacy concerns, many will be resource-constrained devices

3) Design and build an embedded system from ground up
 • Project increased my coding expertise from “sparse” to “fair”
Inventive Hardware Design (Prototype)

Arduino Pro Mini
- Microcontroller
- 8 MHz Clock
- 32 KB Program
- 1 KB NVM
- Plenty of IO

ADXL362
- 3-Axis Accelerometer
- Low Power
- SPI Communication
- Interrupt for Activity/Inactivity

Push Button
- OFF-MOM

Status LEDs
- Debugging and State Tracking
- Low current configuration

9 V Battery
- Battery...
- ... at 9 V

Active Buzzer
- DC powered
- Obnoxious at 5 V
Pseudo-ϵ-Differential Privacy

- **Goal:** Control the amount of information third-party learns from data by adding noise to obscure identifying features.

- **Privacy Mechanism:** ϵ-Differential Privacy by Dwork [2002]
 - Exponential distribution ($\mu = $ true data point, $\sigma = \Delta f / \epsilon$, where ϵ sets the desired privacy level and assuming $\Delta f = 1$ activity level change)
 - ‘Pseudo’ due to bounding between [0, 6] and normalizing, allowing creation of lookup tables for 8 fractional bits but introducing biasing
 - Probability distributions for varying ϵ. Colors represent different input values.
Amazing Results

- User-selectable Privacy:
 - None (1.0), Low (0.9), Medium (0.5), or High (0.1)

- Low-cost Implementation:
 - 8 MHz, single core microcontroller

- Robust when republishing:
 - Same random number seed for each recording session/privacy level combination.

- Results from experiment -->
 - 4 min stationary, 4 min moving, repeated