
CSE200 Lecture Notes

Diagonalization

Lecture by Russell Impagliazzo
Notes by William Matthews

Lecture April 12, 2010

1 Diagonalization

Claim 1 (Cantor). There are more sets of positive integers than positive integers.

Proof. Both of these sets are infinite, how can we argue that one is bigger than the other? Two sets A and
B are the same size if and only if there exists a bijection (a 1-to-1 function) between them. We will take A
to be the set of positive integers, and B to be the set of sets of positive integers.

Assume, for the sake of contradiction, that there exists a bijection f : A → B. We will construct the
following matrix M [i, j] where M [i, j] = 1 iff i ∈ f(j).

M =

f(1) f(2) f(3) . . .
1 1 0 1 . . .
2 0 0 0 . . .
3 1 1 1 . . .
...

...
...

...
. . .

Consider the set S = {i |M [i, i] = 0} = {i | i 6∈ f(i)}. Since the function f is a bijection then there must
exist a j such that f(j) = S. By the definition of S, j ∈ S if and only if j 6∈ f(j) however S = f(j) which
gives a contradiction. Thus f cannot exist.

We conclude by noting that the set of sets of positive integers must be larger than the set of integers since
there exists a an injective mapping from integers to sets of integers by mapping each integer x to {x}.

1.1 From integers to Turing machines

Since each Turing machine has a finite description, we can map Turing machines to positive integers. Similarly
since strings have finite lengths, we can also map strings to integers. A language is just a set of strings,
which we may also view as a set of integers. By a similar argument, there are more languages than Turing
machines. Thus, there exist languages for which no Turing machine decides them (languages which are not
recursive).

Similarly to what we did before, construct the following matrix M [i, j] where M [i, j] = 1 iff i ∈ L(Mj)
i.e. Mj halts and accepts on input i, where i is viewed as the string corresponding to integer i, and Mj is
the Turing machine corresponding to integer j.

Define the language Ldiag = {i | M [i][i] = 0} = {i | i 6∈ L(Mi)}. Suppose for the sake of contradiction
that there existed an integer j such that Mj decided Ldiag. Then Mj halts and accepts j ⇐⇒ j ∈
Ldiag ⇐⇒ j 6∈ L(Mj) i.e. Mj does not accept j. Which is a contradiction, and therefore Ldiag 6∈ REC.

Since Ldiag is somewhat contrived, can we come up with a more natural language that is not in REC?
Define the language HALT = {〈M,w〉 | M is a TM and M halts on input w}. HALT 6∈ REC. Proof:
Suppose, for the sake of contradiction that HALT ∈ REC. Thus, there exists a Turing machine MHALT

1

which decides HALT . We may use MHALT to construct a Turing machine which decides Ldiag: On input
i, run MHALT on 〈Mi, i〉. If MHALT rejects then accept. Otherwise, run Mi on input i. If Mi accepts then
reject, otherwise accept. First, we claim the this TM always halts. Since by assumption MHALT decides
HALT , we know that it always halts. We only run Mi on input i when 〈Mi, i〉 ∈ HALT , so we know that
Mi will halt. Second, we argue that our TM decides Ldiag. Each input i is accepted if and only if either Mi

doesn’t halt on i or Mi halts and rejects i. This corresponds exactly to i 6∈ L(Mi), and therefore i ∈ Ldiag.

1.2 Time bounded Turing machines

For any “nice” time function T (n) (non-decreasing, T (n) ≥ n, T (n) can be computed in time T (n)), there
exists a language that is not decidable in time T (n), but is decidable in time poly(T (n)). Define the

language LCT (n)
M = {x | M is a TM and M accepts x in at most T (|x|) steps}. Using LCT (n)

M , define the

language LT (n)
diag = {i | i 6∈ LCT (n)

Mi
}. By a similar diagonalization argument, we can conclude that no Turing

machine that runs in time at most T (n) can decide LT (n)
diag . However we can construct a TM that runs in time

poly(T (n)) which does decide LT (n)
diag , by simulating the input machine while keeping track of the number of

steps. If we ever run for too many steps, then reject.

2

