Lecture 19: Sequential Networks: Timing (contd), Standard Modules

CSE 140: Components and Design Techniques for Digital Systems

Diba Mirza
Dept. of Computer Science and Engineering
University of California, San Diego
Announcements

• We will have lecture on Friday (02/27)
• Students registered in Section A
 – Lecture at CENTER 109 at noon
• Students registered in Section B:
 – Lecture at SOLIS 104 at 3pm
Important: Midterm 2 time and location

• Students registered in Section A:
 – Midterm at CENTER 216 at 2pm

• Students registered in Section B:
 – Midterm at SOLIS 104 at 2pm

Please check the section that you are registered in, this may be different from the one you normally attend lectures.
Timing Analysis

Timing Characteristics

\[t_{ccq} = 30 \text{ ps} \]
\[t_{pcq} = 50 \text{ ps} \]
\[t_{setup} = 60 \text{ ps} \]
\[t_{hold} = 70 \text{ ps} \]
\[t_{pd} = 35 \text{ ps} \]
\[t_{cd} = 25 \text{ ps} \]

Setup time constraint:
\[T_c \geq (50 + 105 + 60) \text{ ps} = 215 \text{ ps} \]
\[f_c = 1/T_c = 4.65 \text{ GHz} \]

Hold time constraint:
\[t_{ccq} + t_{cd} > t_{hold} \ ? \]
\[(30 + 25) \text{ ps} > 70 \text{ ps} \ ? \text{ No!} \]
Fixing Hold Time Violation

Add buffers to the short paths:

Timing Characteristics

\[t_{ccq} = 30 \text{ ps} \]
\[t_{pcq} = 50 \text{ ps} \]
\[t_{setup} = 60 \text{ ps} \]
\[t_{hold} = 70 \text{ ps} \]
\[t_{pd} = 35 \text{ ps} \]
\[t_{cd} = 25 \text{ ps} \]

Setup time constraint:
\[T_c \geq \]
\[f_c = \]

Hold time constraint:
\[t_{ccq} + t_{cd} > t_{hold} ? \]
Fixing Hold Time Violation

Add buffers to the short paths:

Timing Characteristics

- $t_{ccq} = 30$ ps
- $t_{pcq} = 50$ ps
- $t_{setup} = 60$ ps
- $t_{hold} = 70$ ps
- $t_{pd} = 35$ ps
- $t_{cd} = 25$ ps

Setup time constraint:

$T_c \geq (50 + 105 + 60)$ ps = 215 ps

$f_c = 1/T_c = 4.65$ GHz

Hold time constraint:

$t_{ccq} + t_{cd} > t_{hold}$?

$(30 + 50)$ ps > 70 ps? **Yes!**
Clock Skew

- The clock doesn’t arrive at all registers at the same time
- Skew is the difference between two clock edges
- Examine the worst case to guarantee that the dynamic discipline is not violated for any register – many registers in a system!
Setup time constraint

Consider a circuit where the setup constraint is satisfied for R2 when there is no clock skew.

If CLK 2 is delayed (as shown in the figure), would the setup constraint be still satisfied?

A. Yes
B. No
Setup Time Constraint with Clock Skew

- In the worst case, the CLK2 is earlier than CLK1

\[T_c \geq t_{pcq} + t_{pd} + t_{\text{setup}} + t_{\text{skew}} \]

\[t_{pd} \leq T_c - (t_{pcq} + t_{\text{setup}} + t_{\text{skew}}) \]
Timing Analysis with clock skew

Timing Characteristics

- $t_{ccq} = 30 \text{ ps}$
- $t_{pcq} = 50 \text{ ps}$
- $t_{setup} = 60 \text{ ps}$
- $t_{hold} = 70 \text{ ps}$
- $t_{pd} = 35 \text{ ps}$
- $t_{cd} = 25 \text{ ps}$
- $t_{skew} = 50 \text{ ps}$

Setup time constraint:

What is the minimum allowable clock period given that the clocks are skewed by 50ps?

A. 215ps
B. 265 ps
C. None of the above
Timing Analysis with clock skew

Timing Characteristics

\[t_{ccq} = 30 \text{ ps} \]
\[t_{pcq} = 50 \text{ ps} \]
\[t_{setup} = 60 \text{ ps} \]
\[t_{hold} = 70 \text{ ps} \]
\[t_{pd} = 35 \text{ ps} \]
\[t_{cd} = 25 \text{ ps} \]
\[t_{skew} = 50 \text{ ps} \]

\[t_{pd} = 3 \times 35 \text{ ps} = 105 \text{ ps} \]
\[t_{cd} = 25 \text{ ps} \]

Setup time constraint:

\[T_c \geq 265 \text{ ps} \]

\[f_c = \frac{1}{T_c} = 3.77 \text{ GHz} \]

Without skew we got \(f_c = 4.65 \text{ GHz} \)
Hold Time Constraint with Clock Skew

• In the worst case, CLK2 is later than CLK1

\[t_{ccq} + t_{cd} > t_{\text{hold}} + t_{\text{skew}} \]

\[t_{cd} > t_{\text{hold}} + t_{\text{skew}} - t_{ccq} \]
Hold Time Violation

Add buffers to the short paths:

$$t_{pd} = 3 \times 35 \text{ ps} = 105 \text{ ps}$$

$$t_{cd} = 2 \times 25 \text{ ps} = 50 \text{ ps}$$

Hold time constraint:

$$t_{ccq} + t_{cd} > t_{hold} + t_{skew} ?$$

$$(30 + 50) \text{ ps} > (70 \text{ ps} + 50) \text{ ps} ?$$

Timing Characteristics

- $$t_{ccq} = 30 \text{ ps}$$
- $$t_{pcq} = 50 \text{ ps}$$
- $$t_{setup} = 60 \text{ ps}$$
- $$t_{hold} = 70 \text{ ps}$$
- $$t_{pd} = 35 \text{ ps}$$
- $$t_{cd} = 25 \text{ ps}$$
- $$t_{skew} = 50 \text{ ps}$$
STANDARD MODULES
Interconnect: Decoder, Encoder, Mux, DeMux

Decoder: Decode the address to assert the addressed device
Mux: Select the inputs according to the index addressed by the control signals
Part III. Standard Modules

Interconnect Modules:
1. Decoder, 2. Encoder
3. Multiplexer, 4. Demultiplexer
Decoder Definition: A digital module that converts a binary address to the assertion of the addressed device.

n to 2^n decoder function:

$$y_i = 1 \text{ if } E = 1 \& (I_2, I_1, I_0) = i$$

$$y_i = 0 \text{ otherwise}$$
1. Decoder: Definition

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at any point in time

![2:4 Decoder Diagram]

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Decoder: Logic Diagram (Inside a decoder)

\[y_i = m_i \text{ En} \]

\[y_0 = 1 \text{ if } (A_1, A_0) = (0,0) \text{ & En} = 1 \]

\[y_3 \quad y_7 = A_1A_0\text{En} \]
1. Decoder: Definition

PI Q: What is the output $Y_{3:0}$ of the 2:4 decoder for $(A_1, A_0) = (1,0)$?

A. $(1, 1, 0, 0)$
B. $(1, 0, 1, 1)$
C. $(0, 0, 1, 0)$
D. $(0, 1, 0, 0)$
Implementing functions using Decoders

- OR minterms

\[
\begin{align*}
2:4 & \text{ Decoder} \\
A & 11 \\
B & 10 \\
01 & 00 \\
Minterm & \begin{align*}
AB \\
AB \\
\overline{AB} \\
\overline{AB}
\end{align*}
\]

\[
Y = AB + \overline{AB} = A \oplus B
\]