
CSE30 - HW #1

Due Jan 24, 2014 by 6:00 pm

1 Introduction

The purpose of this assignment is two-fold. First, it aims to get you familiar
with the basic tools of the command-line and C compiling (specifically ssh,
vim, gcc and make). Second, it aims to give you some practice with different
number representations, and the conversions between them.

Computer Science is all about figuring things out with incomplete infor-
mation, and as such, we’re telling you what we need from you, but not always
how to do it. Please try your best to figure out what you need to do before
you ask for more clarification. We’re happy to help if needed, but learning
to be adaptable is a critical skill!

2 Command Line Basics

Most of the homework assignments will need to be carried out on the ieng6
server. This system is equipped with all of the compilation tools you’ll need
for the homework, and can be accessed from any machine with internet access.

This machine is accessible only via SSH, which is a method of remotely
connecting to a machine via command-line interface.

2.1 Connecting to the server

Depending on whether you are running Windows, Mac or Linux, your in-
structions for how to ssh into the server will vary. Windows users should see
the document entitled “WindowsSSH.pdf” alongside this assignment. Mac
users should see “MacSSH.pdf”. If you’re a Linux user and you need help,
email us.

1

2.2 Command line introduction

If you’re new to the command line, you may want to check out http://

www.freesoftwaremagazine.com/articles/command_line_intro. Spend
some time making folders, creating small files (use touch), deleting them,
and navigating around to make sure you understand how the basics work.

2.3 Changing your password

If your password on the server was randomly assigned, you should start off
by resetting your password to something of your own choosing. To do this,
type:

$ passwd

at the command line. It will ask for your current password, and then
it will ask you to type your new password twice (once to confirm). When
typing passwords at the command line, nothing will print out, but you’re
still typing!

2.4 Making a new homework directory

Homework assignments should each be completed in their own directory.
This keeps things logically separate, but also makes it easier to turn in only
the relevant files. Create a new directory with mkdir and navigate into it
with cd (see the tutorial linked above if you’re unsure how to do this).

2.5 Getting Started with CLI Text Editing

To edit a file on the command line, you need a text-based text editor. There
are many different text editors available, but arguably the two most powerful
are vim and emacs. If you already know emacs, you should feel free to use
it. If you already know vim, feel free to skip this section.

If you’ve never used command line editors before, we recommend learn-
ing Vim. Vim is the editor of choice for many software developers, system
administrators, web developers and many others who have to spend time at
the command line.

There are many good (and many bad) tutorials on learning Vim online,
but we recommend http://www.openvim.com/tutorial.html as it is inter-

2

http://www.freesoftwaremagazine.com/articles/command_line_intro
http://www.freesoftwaremagazine.com/articles/command_line_intro
http://www.openvim.com/tutorial.html

active. You don’t need to learn too much Vim to complete this assignment,
but it is expected that you’ll complete the assignment in either Vim or emacs.

3 A simple C program

Now that you’ve grown (somewhat) accustomed to the command line envi-
ronment, it’s time to get coding. First we’ll start out with a very simple C
program: Hello World!

3.1 Hello World! (2 pts)

For this part of the assignment, create a file, called hello.c, that, when
compiled and run, prints out “Hello World!”.

In addition to writing the code, however, you MUST go through and
comment above EVERY meaningful line (you can skip empty lines and ones
with just curly braces) with a short explanation of what it means, and what
it does.

The chances are good that you can find someone else’s version of Hello
World in C online, and that’s ok. A lot of CS is being good at quick research-
ing. We’d like for you to be able to do this entirely on your own, but for
this assignment (and ONLY this assignment), you may find a Hello World
example on the internet, as long as you understand what it is doing. Your
commenting, however, MUST be your own.

Once you’ve written hello.c, you should be able to compile it with gcc:
$ gcc -o hello hello.c

The command above should produce a hello executable that you can
run with

$./hello

3.2 Makefiles (Extra Credit: 2 pts)

Make is a program designed to make compiling large programs easier. In our
toy example here, Make doesn’t buy us much, but for larger programs, it is
important to be familiar with it.

Look over the tutorial at http://mrbook.org/tutorials/make/ (or a
similar tutorial of your choosing) until you understand the general idea be-

3

http://mrbook.org/tutorials/make/

hind Makefiles. This tutorial presents examples based on C++, not C, but
the ideas are very similar (most notably, you should use gcc instead of g++).

Add a makefile to your project that builds the Hello World example when
you type “make” at the command line. Also add a rule that deletes the
compiled hello file when you run “make clean”.

3.3 A slightly more interesting function (8 pts)

Copy the hello.c file to a file called overflow.c. Modify this file to add in
a new function with the following signature:

int overflow(int num1, int num2, char operation);

Code this function so that when two integers are passed to it along with
an operation (which can be either ’+’ for addition or ’*’ for multiplication),
the function prints whether performing the requested operation on the two
numbers results in an overflow if the result is stored in an integer. For
instance, on a 32-bit machine if the function were called as overflow(10,

2, ’+’), the expected output is:

NO OVERFLOW

and the function should return 0. (indicating success)

Alternatively, if the function were called on the same machine as
overflow(500000, 100000, ’*’), the expected output is:

OVERFLOW

and the function should return 1. (indicating failure)

500000 * 100000 = 50000000000 needs more than 32 bits to be stored and
will cause an overflow.

Modify the main() function to test out the overflow function with two mul-
tiplication operations, one of which results in an overflow as well as two
addition operations, one of which results in an overflow.

For extra credit: Modify the makefile you created in the previous section so
that if you run: (extra credit: 3 pts)

• make overflow, the overflow example will compile

4

• make hello the Hello World example will compile

• make (or make all), both will compile.

• make clean both overflow and hello binaries will be deleted.

4 Number Representations

This portion of the assignment is written, and does not involve coding.
To give you more practice with Vim, place your answers in a file called
answers.txt. Make sure your name is at the top, and answers are clearly
labeled for each question.

These questions are designed to give you more practice with various nu-
meric representations and converting between them.

For questions that ask you to “show” something, you must show the
reasoning behind why your answer is correct. Questions that ask you to
“explain” something should be answered in a manner that illustrates your
understanding of the underlying concepts.

0x<number> indicates that <number> is represented in hexadecimal
form.

4.1 Number Representation Basics (10 pts)

1. Perform the following conversions:

• 810 =?8

• 25510 =?2

• 51210 =?2

• 51210 =?16

2. “Qubits”, the basic unit of quantum computing can take on 3 states.
How would you represent the number 64 using these tri-state qubits?

Assuming each possible qubit pattern over n qubits represents a unique
number, how many numbers could you represent over n qubits?

3. Assuming an 8-bit architecture, fill in Table 1 (use an ASCII-art style
table in the answers).

5

Decimal Hexadecimal Binary Binary
(signed) 2’s Complement 1’s Compl. 2’s Compl.

32
0

-15
-128

Table 1: Problem 4.1.3

4.2 Negative Number Representation Schemes (10 pts)

1. Show how many possible numbers can be represented over n bits using
One’s Complement representation

2. Show how many possible numbers can be represented over n bits using
Two’s Complement representation:

3. Show by counterexample that the statement, “To subtract b from a in
a computer with a 4-bit, sign-magnitude architecture, negate b and add
it to a” does not hold for all integers a and b.

4. Show by counterexample that the statement, “To subtract b from a in
a computer with a 4-bit, one’s complement architecture, simply negate
b and add it to a” does not hold for all integers a and b.

4.3 Two’s Complement and Overflow (10 pts)

1. Under two’s complement representation, how many bits will it take to
represent the number 131? How about −128?

2. Show that in a 4-bit binary architecture using 2’s complement repre-
sentation, the following operations provide the correct result:

• Positive plus Positive: 3 + 4

• Negative plus positive: −1 + 4

• Negative plus Negative: −2 + (−2)

3. Show that in a 4-bit binary architecture using 2’s complement repre-
sentation, the following operations DO NOT provide the correct result:

6

• Positive plus Positive: 5 + 5

• Negative plus Negative: −4 + (−6)

4. But wait! In both of the previous questions (parts 2, 3), there were
instances in which a carry bit was dropped. Explain why the arithmetic
operations in 2 work but not in those in 3.

5 GDB: Debugging the Clever Way

Please provide your answers to the following questions in a file entitled
gdb.txt.

A debugger, if you’ve never used one, is a tool specifically designed to
help you understand your program better to help you find and eliminate
bugs. GDB is the predominant debugger in use in the Linux/Unix world,
and supports a number of (compiled) languages and architectures. As such,
knowing how to do use it is an indispensable skill.

GDB allows you to inspect and modify the program as it runs. You can
set breakpoints, inspect memory and registers, and much more.

In order to use the debugger effectively, you must compile the source with
with the “-g” flag. This includes debugging information in the compiled file
such as function names, line numbers, etc.. In general, it’s a good idea to
always use “-g” unless you’re compiling for public production. Also include
the “-O0” flag (that’s dash-oh-zero). What does that flag do?

You may find this GDB cheatsheet from UT helpful:
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

5.1 Debugging Code (10 pts)

For this portion of the assignment, you’ll first need to copy and compile the
provided code. The code is stored on the server at
/home/linux/ieng6/cs30w/public/hw/hw1/gdb.c.
Use cp to copy it to your working directory, and then compile it with gcc

into a binary called “gdb1”.

1. Run gdb ./gdb1 and set a breakpoint in main() (“b main”). Run the
program by typing “r” or “run”. The program will stop just before
starting in main().

7

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

2. Type “c” (or “continue”) to continue past the breakpoint. What
happens?

3. Type “bt” (or “backtrace”) to get a trace of the call stack and find
out how you got where you are. Take note of the numbers in the left
column. Type “up n”, where n is one of those numbers, to get to main’s
stack frame so that you can look at its variables. What line are you
on?

4. Rerun the program with an argument of 5 by typing “r 5”. Continue
from the the breakpoint. What does the program print?

5. Type “r” (without any further parameters) to run the program yet
again. When you get to the breakpoint, examine the variables argc

and argv by using the print command. For example, type “print
argv[0].” Also try “print argv[0]@argc”, which is gdb’s notation
for saying “print elements of the argv array starting at element 0 and
continuing for argc elements.” What is the value of argc? What are
the elements of the argv array? Where did they come from, given that
you didn’t add anything to the run command?

6. The step or s command is a useful way to follow a program’s execution
one line at a time. Type “s”. Where do you wind up?

7. Gdb always shows you the line that is about to be executed. Sometimes
it’s useful to see some context. Type “list” What lines do you see?
Hit the return key. What do you see now?

8. Type “s” to step to the next line. Then hit the return key three times.
What do you think the return key does?

9. What are the values of result, a, and b?

6 Assignment Turn-in

As soon as you’re finished with the assignment, you may use the turnin

command to submit your work. The turnin command accepts a single file
as argument. So, first compress the folder into a tar.gz file using the com-
mand tar -czf hw1.tar.gz hw1 where hw1 is the name of your homework
directory. Next execute turnin -p hw1 hw1.tar.gz.

8

You may submit your homework as many times as you’d like, but only
the final submission will be recorded. Make sure that all files needed
for the assignment are in the directory given to turnin. No other
files will be submitted.

Late assignments will not be accepted, so make sure to turn in your work
by the deadline! Moreover, remember not to submit new versions of your
homework after the deadline – new submissions overwrite old ones, and thus
you will have submitted your assignment late.

7 Getting Help

As always, if you need help, feel free to post to the forum on Ted. If that
oesn’t work, or you need an instructor’s help, feel free to shoot an email!

9

	Introduction
	Command Line Basics
	Connecting to the server
	Command line introduction
	Changing your password
	Making a new homework directory
	Getting Started with CLI Text Editing

	A simple C program
	Hello World! (2 pts)
	Makefiles (Extra Credit: 2 pts)
	A slightly more interesting function (8 pts)

	Number Representations
	Number Representation Basics (10 pts)
	Negative Number Representation Schemes (10 pts)
	Two's Complement and Overflow (10 pts)

	GDB: Debugging the Clever Way
	Debugging Code (10 pts)

	Assignment Turn-in
	Getting Help

