Random Variables and Random Vectors

Random variables

- Samples from a random variable are real numbers
- A random variable is associated with a probability distribution over these real values
- Two types of random variables
- Discrete
- Only finitely many possible values for the random variable:

$$
X \in\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

- (Could also have a countable infinity of possible values)
» e.g., the random variable could take any positive integer value
- Each possible value has a finite probability of occurring.
- Continuous
- Infinitely many possible values for the random variable
- E.g., $X \in\{$ Real numbers $\}$

Discrete random variables

- Discrete random variables have
a pmf (probability mass function), \boldsymbol{P}
$\mathrm{P}(X=a)=\boldsymbol{P}(\mathrm{a})$
- Example: Die roll

Tim Marks, Cognitive Science Department

Discrete random variables

- Discrete random variables have a pmf (probability mass function), \boldsymbol{P} $\mathrm{P}(X=a)=\boldsymbol{P}(\mathrm{a})$
- Example: Coin flip
$\mathrm{X}=0 \quad$ if heads
$\mathrm{X}=1 \quad$ if tails
- What is the pmf of this random variable?

U1J. Tim Marks, Cognitive Science Department

Continuous random variables

- Continuous random variables have a pdf (probability density function), \boldsymbol{p}
- Example: Uniform distribution

$$
\begin{aligned}
& p(1.3)=? \quad p(2.4)=\text { ? } \\
& \text { What is the probability } \\
& \text { that } X=1.3 \text { exactly: } \\
& \mathrm{P}(X=1.3)=\text { ? }
\end{aligned}
$$

Probability corresponds to area under the pdf.

$$
\mathrm{P}(1<X<1.5)=\int_{1}^{15} p(x) d x=0.25
$$

2 UCSD
Tim Marks, Cognitive Science Department

Continuous random variables

- What is the total area under any pdf?

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

- Example continuous random variable: Human heights

Tim Marks, Cognitive Science Department

Random variables: Mean \& Variance

- These formulas can be used to find the mean and variance of a random variable when its true probability distribution is known.

	Definition	Discrete r.v.	Continuous r.v.
Mean μ	$\mu=\mathrm{E}(X)$	$\mu=\sum_{i} a_{i} P\left(a_{i}\right)$	$\mu=\int_{-\infty}^{\infty} x p(x) d x$
Variance	$\mathrm{E}\left((X-\mu)^{2}\right)$	$\sum_{i}\left(a_{i}-\mu\right)^{2} P\left(a_{i}\right)$	$\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x$
$\operatorname{Var}(X)$			

The Gaussian distribution

Estimating the Mean \& Variance

- After sampling from a random variable n times, these formulas can be used to estimate the mean and variance of the random variable.
- Samples $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$

Estimated mean: $\quad m=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
Estimated variance:

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2} \quad \leftarrow \underset{\text { likelihood estimate }}{\text { maximum }} \\
& \sigma^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2} \leftarrow \text { unbiased estimate }
\end{aligned}
$$

Random variables

- How much change do you have on you?
- Asking a person (chosen at random) that question can be thought of as sampling from a random variable.
- Is the random variable
"Amount of change people carry" discrete or continuous?

An important type of random variable

Finding mean, variance in Matlab

- Samples $x=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \cdots & x_{n}\end{array}\right]$
- Mean
>> m = (1/n)*sum (x)

$$
\begin{aligned}
& \text { - Variance } \\
& \qquad \left.\sigma^{2}=\frac{1}{n}\left[\begin{array}{llll}
x_{1}-m & x_{2}-m & \cdots & x_{n}-m
\end{array}\right] \right\rvert\, \begin{array}{c}
x_{1}-m \\
x_{2}-m \\
\vdots \\
x_{n}-m
\end{array} ~
\end{aligned}
$$

Method 1: $\quad \gg v=(1 / n)^{*}(x-m)^{*}(x-m)^{\prime}$
Method 2: $\gg \mathrm{z}=\mathrm{x}-\mathrm{m}$

$$
\gg v=(1 / n)^{*} z^{*} z^{\prime}
$$

-UCSD

Tim Marks, Cognitive Science Department

Example continuous random variable

- Time people woke up this morning
- Gaussian
$\mu=9, \sigma^{2}=1$

Tim Marks, Cognitive Science Department

Example continuous random variable

- People's heights (made up)
- Gaussian
$\mu=67, \sigma^{2}=20$
- What if you went to a planet where heights Gaussian $\mu=75, \sigma^{2}=5$
- How would they be different from us?

UCSD Tim Marks, Cognitive Science Department

Random vectors

- An n-dimensional random vector consists of n random variables that are all associated with the same events.
- Example 2-D random vector:
$\mathbf{V}=\left\lfloor\begin{array}{l}X \\ Y\end{array}\right\rfloor \quad$ where X is random variable of human heights
- Sample n times from V.

$$
\begin{aligned}
& \mathbf{v}_{1} \\
& \mathbf{v}_{2}
\end{aligned} \cdots \frac{\cdots}{\mathbf{v}_{n}}, ~\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]
$$

Let's collect some samples and graph them:
$\begin{array}{r}y \\ \begin{array}{c}\text { (wake-up } \\ \text { times) }\end{array} \\ \hline\end{array}$ \qquad x (heights)

-11CSD

Tim Marks, Cognitive Science Department

Mean of a random vector

- Estimating the mean of a random vector
$-n$ samples from V

$$
\begin{gathered}
\mathbf{v}_{1} \\
\mathbf{v}_{2}
\end{gathered} \cdots \frac{\cdots}{\mathbf{v}_{n}}\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]
$$

Mean

$$
\mathbf{m}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{v}_{i}=\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]=\left[\begin{array}{l}
m_{x} \\
m_{y}
\end{array}\right]
$$

- To estimate mean of V in Matlab

$$
\gg(1 / n) * \operatorname{sum}(v, 2)
$$

- UCSD

Tim Marks, Cognitive Science Department

Random vector

- Example 2-D random vector:
$V=\left\lfloor\begin{array}{l}X \\ Y\end{array}\right] \quad$ where X is random variable of human heights
- Sample n times from V
- What will graph look like?

$$
\begin{gathered}
\mathbf{v}_{1} \\
\mathbf{v}_{2}
\end{gathered} \cdots \frac{\mathbf{v}_{n}}{}\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right] .
$$

Estimating covariance from samples

- Sample n times:

$$
\left\lfloor\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right\rfloor
$$

$\operatorname{Cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m_{x}\right)\left(y_{i}-m_{y}\right)$
\leftarrow maximum
likelihood estimate
$\operatorname{Cov}(X, Y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-m_{x}\right)\left(y_{i}-m_{y}\right) \quad \leftarrow$ unbiased estimate

- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- How are $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(Y, X)$ related?
$\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
\because UCSD
Tim Marks, Cognitive Science Department

Covariance of two random variables

- Height and wake-up time are uncorrelated, but height and weight are correlated.
- Covariance
$\operatorname{Cov}(X, Y)=0 \quad$ for $X=$ height, $Y=$ wake-up times
$\operatorname{Cov}(X, Y)>0 \quad$ for $X=$ height, $Y=$ weight
- Definition:

$$
\operatorname{Cov}(X, Y)=\mathrm{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right)
$$

If $\operatorname{Cov}(X, Y)<0$ for two random variables X, Y, what would a scatterplot of samples from X, Y look like?

Estimating covariance in Matlab

- Samples
- Means
$x=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \cdots & x_{n}\end{array}\right]$
$y=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & \cdots & y_{n}\end{array}\right]$
$m_{x} \leftarrow \mathrm{~m}_{-} \mathrm{x}$
- Covariance
$m_{y} \leftarrow m_{-} \quad \mathrm{y}$

$$
\left.\begin{array}{l}
\operatorname{Cov}(X, Y)=\frac{1}{n}\left[\begin{array}{llll}
x_{1}-m_{x} & x_{2}-m_{x} & \cdots & x_{n}-m_{x}
\end{array}\right]\left[\begin{array}{c}
y_{1}-m_{y} \\
y_{2}-m_{y} \\
\vdots \\
y_{n}-m_{y}
\end{array}\right] \\
\text { Method } 1 \cdot \gg \mathrm{y}=(1 / n) *(\mathrm{x}-\mathrm{m}
\end{array}\right)
$$

Method 1: >> $v=(1 / n)^{*}\left(x-m_{-} x\right)^{*}\left(y-m _y\right)^{\prime}$
Method 2: >> w = x-m_x
$\gg z=y-m _y$
$\gg v=(1 / n){ }^{*}{ }^{*}{ }^{*} z^{\prime}$
2 UCSD
Tim Marks, Cognitive Science Department

Covariance matrix of a

 D-dimensional random vector- In 2 dimensions
$V=\left\lfloor\begin{array}{l}X \\ Y\end{array}\right\rfloor$

$$
\operatorname{Cov}(\mathbf{V})=\mathrm{E}\left((\mathbf{V}-\mu)(\mathbf{V}-\mu)^{T}\right)
$$

$$
=\mathrm{E}\left(\left[\begin{array}{c}
X-\mu_{X} \\
Y-\mu_{Y}
\end{array}\right]\left[\begin{array}{lc}
X-\mu_{X} & Y-\mu_{Y}
\end{array}\right]\right)=\left[\begin{array}{cc}
\operatorname{Var}(X) & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}(Y)
\end{array}\right]
$$

- In D dimensions

$$
\operatorname{Cov}(\mathbf{V})=\mathrm{E}\left((\mathbf{V}-\mu)(\mathbf{V}-\mu)^{T}\right)
$$

- When is a covariance matrix symmetric?
A. always, B. sometimes, or C. never

[^0]
Example covariance matrix

- People's heights (made up)
$X \sim \mathrm{~N}(67,20)$
- Time people woke up this morning

$$
Y \sim \mathrm{~N}(9,1)
$$

- What is the covariance matrix of $\quad V=\left[\begin{array}{l}X \\ Y\end{array}\right]$?

Estimating the covariance matrix from samples (including Matlab code)

- Sample n times and find mean of samples

$$
V=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} \\
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right] \quad \mathbf{m}=\left\lfloor\begin{array}{l}
m_{x} \\
m_{y}
\end{array}\right\rfloor
$$

$$
\begin{aligned}
& \text { - Find the covariance matrix } \\
& \left.\qquad \left.\operatorname{Cov}(V)=\frac{1}{n}\left[\begin{array}{llll}
x_{1}-m_{x} & x_{2}-m_{x} & \cdots & x_{n}-m_{x} \\
y_{1}-m_{y} & y_{2}-m_{y} & \cdots & y_{n}-m_{y}
\end{array}\right] \right\rvert\, \begin{array}{cc}
x_{1}-m_{x} & y_{1}-m_{y} \\
x_{2}-m_{x} & y_{2}-m_{y} \\
\vdots & \vdots \\
x_{n}-m_{x} & y_{n}-m_{y}
\end{array}\right\rfloor
\end{aligned}
$$

$$
\gg m=(1 / n) * \operatorname{sum}(v, 2)
$$

$\gg z=v-\operatorname{repmat}(m, 1, n)$
$\gg \mathrm{V}=(1 / \mathrm{n})^{*} \mathrm{Z}^{*} \mathrm{Z}^{\prime}$

- UCSD Tim Marks, Cognitive Science Department

Gaussian distribution in D dimensions

- 1-dimensional Gaussian is completely determined by its mean, μ, and variance, σ^{2} :

$$
X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \quad p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- D-dimensional Gaussian is completely determined by its mean, μ, and covariance matrix, Σ :

$$
X \sim \mathrm{~N}(\mu, \Sigma) \quad p(\mathbf{x})=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{\mathrm{T}} \Sigma^{-1}(\mathbf{x}-\mu)}
$$

-What happens when $D=1$ in the Gaussian formula?
USSD Tim Marks, Cognitive Science Department

[^0]: Tim Marks, Cognitive Science Department

