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Abstract 
Scheduling and synchronization are the two mainstays of embedded real-time operating system 
development. This paper presents research on these two topics. On the topic of schedulers we 
explain the scheduling constraints faced by embedded real-time systems and present scheduling 
techniques that can efficiently meet these constraints. On the topic of synchronization, we give a 
simple synchronization method commonly used today in embedded real-time systems and follow 
that with several more sophisticated approaches. 

1 Introduction 
An embedded real-time system, as its name implies, possesses the characteristics of both an 
embedded system and a real-time system. An embedded system is one that is special purpose, 
often uniprocessor, and generally is not user-programmable. When it is user-programmable, the 
“programming” is more at the level of system configuration. Because an embedded system is 
special purpose and is not user-programmable, the applications are trusted. This means that the 
operating system and the applications can share portions of their address spaces to communicate. 
Another result of an embedded system being special purpose is that it typically does not have a 
file system or standard peripherals. 

A real-time system is one that must perform operations within rigid timing constraints. Real-time 
systems are further subdivided into hard real-time and soft real-time. Hard real-time means that 
that a failure will be of great consequence. An example of this is a real-time system controlling a 
nuclear reactor. A soft real-time system must act within timing constraints for its operation to be 
correct, although a timing failure in this kind of system is more of an annoyance. An example of 
this kind of system is a bank’s automated teller machine. 

An example of an embedded real-time system is a hypothetical helicopter sensor monitoring 
system. The system’s software is only be loadable at the factory and is stored on a socketed 
ROM chip. The purpose of this system is to acquire sensor data on regular intervals, process that 
data, and store it to a solid state device for later playback for perform usage tracking and off-line 
mechanical problem detection. The sensors are a combination of polled sensors and sensors 
which signal the CPU by interrupt when they have data ready. The real-time nature of the system 
depends on a clock interrupt, and consequently this interrupt has highest priority. Multiple tasks 
are used to acquire the data, process the data and write it to the display, and store the data. The 
first task is the highest priority, which must acquire data on the regular intervals as closely as 
possible for an accurate usage profile. Processing of the data and writing it to the display is of 
secondary importance, but the user still wants to see the processed data regularly update. Storing 
the data is of the lowest priority because the data is queued until written. Critical sections of code 
are safely executed by disabling interrupts before the section and reenabling them after. 
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In this paper, we present recent research on two very important topics in embedded real-time 
operating systems: scheduling and synchronization. Applications of this research can provide 
improvements, either in correctness or performance, to systems like the one described above. An 
important topic in embedded real-time system research not covered in this paper is the use of 
software-managed caches to guarantee a performance boost. However, the literature presents this 
as the responsibility of the compiler or the application programs themselves, rather than the 
operating system [1]. 

2 Scheduling Tasks 

Scheduling is the designing of the order and/or execution of a set of tasks with certain known 
characteristics on a limited set of processing units. In embedded systems there are different 
resources like the CPU, memory, peripherals, etc. for which scheduling techniques are required. 
In this paper some of the scheduling principles and algorithms are general but they are more 
relevant to the CPU as a resource of contention. The CPU is the most important resource for 
which a contention arises and the design of a good scheduler goes a long way in determining the 
performance of embedded systems, and any system for that matter. 

In general, an operating system scheduler works on a broader principle of fairness. In real-time 
systems the main goal is to achieve timeliness. In an embedded real-time system, a scheduler has 
to work under a number of constraints such as concurrent execution of tasks with the constraint 
of meeting deadlines, using very little CPU power, low memory constraint, size constraint, 
economy of scale and host of other factors. Therefore, embedded real-time schedulers are 
characterized by the need for running several tasks in a constraint environment with minimum 
overheads, even at the cost of losing generality. 

Most embedded systems are based on single processor, so our discussion in this paper is mostly 
based on uniprocessor architecture. With multiprocessor architecture comes the factor of cost 
and complexity that is avoided in embedded systems.  

In the following sections we will describe different scheduling paradigms, scheduling algorithms 
followed by their analysis. We will also provide a hybrid solution suitable for embedded 
systems. Before discussing embedded real-time system schedulers, we provide an introduction to 
certain system concepts that carry a lot of significance in embedded real-time systems. 

Periodic Tasks - The period of a task is the rate with which a particular task becomes ready for 
execution. Periodic tasks become ready at regular and fixed intervals. Periodic tasks are 
commonly found in applications such as avionics and process control accurate control requires 
continual sampling and processing data. 

Sporadic tasks - These tasks have non-periodic arrival patterns. Sporadic tasks are associated 
with event driven processing such as responding to user inputs or non-periodic device interrupts. 
These events occur repeatedly, but the time interval between consecutive occurrences varies and 
can be arbitrarily large. 

Deadlines - All real time tasks have deadline by which a particular job has to be finished. There 
are scheduling algorithms designed to allow maximum tasks to meet their deadline.  

Laxity - Laxity is defined as the maximum time a task can wait and still meet the deadline. It can 
also be used as a measure of scheduling necessity. 
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Jitter - It is defined as the time between when a task became ready and when it actually got 
executed. For certain real time systems there is an additional constraint that all the tasks should 
have minimum jitter.  

Schedulability - A given set of tasks is considered to be schedulable if all the tasks can meet their 
deadline. In certain on-line scheduling algorithms a new task is subject to schedulability test, 
wherein it is verified that the new task is schedulable along with the already existing tasks. If the 
task is not schedulable the task is not permitted to enter the system. 

Utilization - It is the factor giving a notion of how much CPU is utilized by a given set of tasks. 
Liu and Layland [2] gave proof that there is a theoretical upper limit of processor utilization by a 
given scheduling algorithm. For earliest deadline first (EDF -- described later) scheduling, a 
utilization of 1 (maximum) can be achieved. 

2.1 Design Issues 

The scheduling problem consists of deciding the order of execution and also the period of 
execution of a set of tasks with certain known characteristics like periodicity and limited set of 
processing units, which is typically a single processor in embedded systems. There are two kinds 
of constraint faced by tasks executing in an embedded real-time environment: time constraint 
and resource constraint. 

In real time world most of the tasks have a time constraint, a deadline in executing a particular 
job. The tasks are also required to have a good response time to increase the response time of the 
System and execute in a manner so that other tasks can also meet their deadlines. 

The other constraint that affects the design of an embedded real-time system is resource 
constraint. In embedded systems there is a limited RAM availability, limited CPU speed, power 
consumption constraint and host of other resource related constraints. An embedded system is 
designed to work optimally in spite of the resource constraint problems it has. 

Due to the above-mentioned constraints (a combination) there is an immense pressure on 
embedded operating system performance. An embedded system’s performance in presence of 
constraints is highly correlated with how smart the scheduler is.  

Up until now, a lot of research has been done on developing schedulers that can meet these 
constraints. We will go through these in our next section. We will discuss various designs 
relevant in embedded real-time world and follow them up with our analysis. 

2.2 Scheduling Paradigms 

2.2.1 Static scheduling 

This is a pre-runtime based scheduler, wherein tasks execute in a statically decided order. The 
order of execution is decided before the tasks are entered into the system based on statically 
defined criterion like deadline, criticality, periodicity etc. The advantage of using static 
scheduling procedure is that it involves almost no overhead in deciding which task to schedule. 
Static scheduling involves that a task be executed whenever it is expected to be ready or at least 
be tested for readiness cyclically. Static scheduling of tasks in embedded real-time systems often 
implies a tedious iterative design process. The reason for this is the lack of flexibility and 
expressive power in existing scheduling framework, which makes it difficult to both model the 
system accurately and provide correct optimizations. This causes systems to be over constrained 
due to statically decided rules of procedures.  
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2.2.1.1 Round-robin method 

The simplest of static scheduling procedures is round-robin method. The tasks are checked for 
readiness in a predetermined order with ready to execute task getting a CPU slice. Each tasks 
gets checked for schedulability once per cycle, with scheduling time bound by execution time of 
other tasks. Apart from simplicity this method has no advantages. The major disadvantage being 
that urgent tasks always have to wait for their turns, allowing non urgent tasks to execute before 
the urgent tasks. Also polling tasks for schedulability for readiness is not a good procedure at all. 
This type of scheduling works well in some simple embedded systems where software in the 
loop executes quickly and the loop can execute repeatedly at a very rapid rate. 

2.2.1.2 Static Cyclic Scheduling 

In this method tasks are checked in a predetermined order and the tasks that are found ready are 
executed. There can be a multi rate procedure where tasks can appear more than once in a cycle 
depending upon their urgency. This method is better than former but still has disadvantage of 
overheads involved with frequent readiness checks. This procedure still has a problem that an 
execution of a particular task is dependent upon execution time of former tasks.  

2.2.2 Dynamic Scheduling 

In embedded real-time systems a dynamic scheduling [5] policy is based on priority. In a 
dynamic scheduling policy the tasks are dynamically chosen based on their priority dynamically, 
generally from ordered prioritized queue. The priorities can be assigned statically or dynamically 
based on different criterions like, deadline, criticality, periodicity etc. Dynamic scheduling can 
be preemptive or non preemptive. There are two approaches to dynamically schedule tasks. The 
first is to dynamically schedule tasks with an optimistic criterion to minimize the number of 
tasks that fail to make the deadline, or minimize the maximum deadline violations. The second, 
as each task occurs in the system the existing schedule is checked to see if the new task can be 
added to the schedule so that it's deadline can be met. If adding the task results in previous 
essential tasks to miss the deadline, then application is informed about it.  

Meeting deadlines, achieving high CPU utilization with minimum resource and time utilization 
are considered as the main goals of task scheduling. Both preemptive and non-preemptive 
algorithms can be used to satisfy these objectives. Non-preemptive schedulers are easier to 
implement and analyze. It has advantages of saving extra context switches and save overheads 
involved in supporting mutual exclusion over preemptive scheduling. The problem with non pre-
emptive scheduling is that it can cause some tasks to miss their deadlines as non-preempted tasks 
can have varying release times. 

A hybrid approach can also be used wherein tasks are divided into different queues at different 
scheduling levels. A scheduler could consist of two levels of scheduler queues, the upper queue 
consists of very high priority (critical) non-preemptive tasks and a lower queue has pre-emptive 
tasks. 

2.2.3 Synchronous Scheduling 

In synchronous scheduling algorithms the available processing time is divided by hardware clock 
into intervals called frames. In each frame, the set of tasks allocated are guaranteed to be 
completed by the end of the frame. If a task is too big to fit into a frame, it is artificially divided 
into a set of highly independent tasks such that smaller tasks can be scheduled into the frames. 
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2.3 Scheduling algorithms 

2.3.1 Rate Monotonic Scheduling (RMS) 

Static priority dynamic scheduling has received tremendous interest after pioneering work done 
by Liu and Layland.  For tasks that were periodic (with deadlines at the end of each period), 
perfectly preemptible, independent (or noninteracting) Liu and Layland provided mathematical 
conditions for assessing schedulability of a set of tasks. The rate monotonic scheduling algorithm 
simply assigns highest priority to the task with the highest rate (or with shortest period) and 
assigned the priorities of the remaining tasks monotonically in the order. The Liu-Layland's 
theorem states that a set of independent periodic tasks scheduled by the rate monotonic algorithm 
will always meet the deadlines, for all the task phasings, if 

C1/T1  + Cn/Tn  <= U(n) = n(2^1/n –1) 

Ci = worst case task execution time of Taski,  Ti = period of Taski. U(n) = utilization bound of n 
tasks. 

Periodic task  Execution Time  Period        Deadline 
Task1 20 ms 100 ms 100 
Task2 40 ms 150 ms 150 
Task3 100 ms 350 ms 350 

 
Example above: 20/100 + 40/150 + 100/350  <= U(3) = 3(2^1/3 –1) 

The total utilization in this problem is 75.3% that is below the bound for 3 tasks of 77.9 % 
utilization. So this tells that periodic tasks are schedulable. 

2.3.2 Deadline driven Scheduling Algorithm 

2.3.2.1 Earliest Deadline First (EDF) 

Liu and Layland have also found stronger utilization for a dynamic priority assignment policy 
called earliest deadline first (EDF). A task is assigned highest priority if its deadline is the 
nearest and will be assigned lowest priority if the deadline is farthest. In EDF scheduling there is 
no processor idle time prior to a missed deadline condition. The theorem states that for a given 
set of m tasks, the deadline driven scheduling algorithm is feasible if and only if 

C1/T1 + … + Cm/Tm <= 1 

The worst-case response time (R) of a task is measured as the time when task is made ready to 
the time when tasks actually get executed. The task with a deadline D is schedulable if R < D.  

Ri = Si + Bi + Ci + E [ Ri/Tk ]Ck 

Where Si = Scheduling overheads of Taski, Tk = Time between when task k gets ready again,  Bi 
= blocking time of task i, Ci = Execution time of task i. [ ] = the ceiling function ( [1.2] = 2 ). The 
factor Ri/Tk gives the amount of interference when a higher priority task preempts task i. So the 
total time taken by higher priority task is given by [Ri/Tk]Ck. 

Blocking time is defined as the time for which a low priority task can delay the execution of high 
priority task. Blocking can lead to tasks missing deadlines.  Since blocking is an important 
phenomenon we will explain the concept and methods to reduce and quantify Blocking times 
here. Figure 1 is a timeline in with lowest priority at the bottom. As is evident from the diagram 
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a lower priority task blocks the execution of high priority task. This phenomenon is called 
priority inversion. 

A priority inheritance mechanism [4] is used to avoid priority inversion. In this algorithm a 
lower priority task inherits the priority of the highest priority task that gets blocked. As can be 
seen from the Figure 2 the priority of lower task is increased once the higher priority task tries to 
lock the semaphore. The priority inheritance does solve problems of blocking to some extent but 
does not completely solve the problem of unpredictable delays. The priority inheritance 
mechanism cannot solve circular blocking which can lead to deadlocks. 

 

1LockS

1LockS

1UnlockS

  
 

Figure 1: Priority Inversion 

 
 
 
        

1LockS

1LockS

1UnlockS

 

Figure 2: Priority Inheritance 
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Figure 3: Priority Ceiling Protocol 
 

To solve these problems there is a mechanism called the priority ceiling protocol (PCP). Each 
semaphore has an associated ceiling that it attains once it locks that semaphore. When the task 
releases the semaphore the priority is reverted to old one. The tasks can hold more than one 
semaphore in a nested pattern (Figure 3). Most embedded real-time systems implement a variant 
of PCP by locking processor interrupts during period of contention so that data can be shared in a 
mutually exclusive manner. In PCP, blocking times are bounded and can be calculated. The Bi 
time evaluated in this manner is used in above equation. 

2.3.2.2 Least Laxity Algorithm 

In this approach the process having least laxity is assigned highest priority and is therefore 
executed first of all. A running process can be preempted by another task whose laxity has 
decreased below the currently executing task. The laxity of running process is constant. 

2.4 Analysis 

The problem of implementing Liu and Layland's procedures in embedded real-time systems is 
that a lot of embedded systems often violate the assumptions of Liu and Layland. Rate 
Monotonic Scheduling (RMS) is very inflexible and is not suited in certain scenarios. 
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Figure 4: Subtask Scheduling 
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If there are two tasks, T1 and T2 each having one subtask with C1 = 4, D1 = 10, C2 = 8, T2 = 14. 
According to Liu and Layland, P1 > P2. It can be clearly seen that due to rate monotonic priority, 
the task set is not schedulable. However now if T2 is divided into 2 subtasks with a execution 
time of C21 = 6 and C22 = 2 and priorities assigned as P21 < p1 < p22 then the task set is 
schedulable (Figure 4). This shows that one may need to check deadlines of more than one job of 
a particular task. And most real time systems are comprised of subtasks having varying 
execution times and varying periods. The other disadvantage is run time overheads. The problem 
with the least laxity approach is when two processes have similar laxity, causing one process to 
run for a while and then getting preempted by the other task and vice versa. This can result in 
"thrashing". Least laxity is optimal in the same way as earliest deadline when the cost of context 
switching is ignored. 

2.5 Hybrid Solution 
The problem with RMS- and EDF-like scheduling algorithms is that they have significant 
overhead: run-time overhead and schedulability overhead. In embedded real-time systems, due to 
limited resources, all sources of overhead should be reduced as much as possible.  

The run time overhead is related to parsing the queues and adding/deleting tasks from scheduler 
queues. Each task blocks and unblocks at least once in a scheduler period and scheduler has to 
select twice in a single period the task to be scheduled. In RMS method tasks can be maintained 
in a sorted queue resulting in a selection overhead of just one simple comparison. For EDF the 
scheduler has to parse the whole list of tasks resulting in high overall run-time scheduler 
overhead. 

Schedulability overhead is the theoretical limit on the task sets that are schedulable under a given 
scheduling algorithm. For EDF the schedulability overhead is 0 as the processor utilization can 
be U=1. For RM utilization is U<1 and hence it always has a schedulability overhead > 0. 

So a scheduling algorithm that is a hybrid of RM and EDF can combine the low run time 
overhead of RM and low scheduling overhead of EDF to give an optimized scheduling algorithm 
[3].  

3 Synchronization 
Synchronization in the context of real-time embedded systems normally refers to the controlled 
access to shared memory within a given subsystem. Messages are used for synchronization as 
well, but generally this is for communication between subsystems. This section begins with a 
method of synchronization commonly used in practice followed by a presentation of recent 
research in mutual-exclusion-type synchronization methods that are suitable for use in a single-
processor subsystem. 

3.1 A Current Method of Synchronization 

A simple method of synchronization in embedded real-time systems is disabling interrupts before 
and reenabling interrupts after a critical section. Because applications are trusted in this 
environment, they are permitted to execute the CPU instructions to do this. This provides an easy 
synchronization method when the operating system does not provide any synchronization 
support. This is a common situation in embedded programming. 
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The drawback to this approach is that it can negatively affect the real-time nature of the system. 
For example, suppose an application process needs access to a shared buffer. To guarantee 
consistent data, all accessing processes must disable the interrupts when accessing the data and 
reenable them immediately after. As another example, when an interrupt service routine (ISR) 
must access a shared data structure, it is common practice to execute the entire ISR with 
interrupts disabled. Disabling the interrupts prevents preemption because the scheduler is 
triggered by an interrupt. During the time that interrupts are disabled, any pending interrupts are 
held by a register and will be serviced when interrupts are reenabled. This delay is known as 
interrupt latency. The application programmer assumes the burden of ensuring that interrupts are 
disabled for a short a period as possible to minimize this. 

3.2 Interrupt Transparent Synchronization 

A synchronization technique that is designed specifically to deal with interrupt latency is 
interrupt-transparent synchronization [8], a feature implemented by the PURE family of 
embedded operating systems. The basic idea behind this method is to keep interrupts enabled as 
much as possible to ensure the responsiveness of the system. To do this, servicing of interrupts is 
decomposed into two parts: a prolog and an epilog. The prolog is executed immediately when an 
interrupt is detected and runs with interrupts of lesser priority masked. The epilog is a 
continuation of the interrupt service routine that does not require instantaneous service and that 
may contain critical sections. Epilog code run with all interrupts enabled. This is the key feature 
that provides interrupt transparency. When an interrupt occurs, the prolog is run which performs 
some action and then defers the rest of its action by adding an epilog to the epilog queue. 

The epilog queue is a first-in-first-out (FIFO) structure. Epilogs contained in this queue are run at 
the lowest physical interrupt priority. Because epilogs are run with interrupt priority, the epilog 
queue code runs until completion before any normal tasks can run. Because the epilogs are run 
serially, there is no risk of interprocess conflict. 

Note that access to this queue must be synchronized because higher priority interrupts may 
trigger additional epilog enqueue operations while one is already in progress. Schön explains that 
this problem is dealt with by setting the tail pointer of the queue to point to the epilog to be 
enqueued before the actual insertion is performed. Since the assignment of the pointer is atomic, 
the enqueue is synchronized. Synchronizing the dequeue operation is somewhat more 
complicated. If the queue only contains one element and the dequeue operation is overlapped by 
an enqueue operation, the overlapping enqueue operation(s) will in fact chain the new epilogs to 
the epilog being dequeued. This results from both operations attempting to modify the tail 
pointer of the queue at the same time. The dequeue operation must test for this case. If it has 
occurred, the dequeue operation must unhook all epilogs mistakenly attached to the item it is 
dequeuing and reinsert them into the epilog queue. The dequeue operation cannot overlap itself 
because prologs cannot dequeue an epilog once it is queued. 

Users of the Java programming language will find familiar the serialization of critical section 
code for purposes of synchronization. For high performance, Java Foundation Class (JFC) user-
interface components are not thread-safe. That is, state changes performed on these objects are 
not explicitly synchronized. This could potentially be dangerous, as Java is a multi-threaded 
language. To ensure that JFC objects maintain their consistency, all state changes to these objects 
are executed from a single thread: the event-dispatch thread. The event-dispatch thread executes 
operations queued on the event queue in a strict first-come-first-served (FIFO) order. Normally, 
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operations waiting in the event queue result from clicking a button or entering data in an 
application’s graphical user-interface. When the state of a JFC object must be modified from 
another thread, Java’s SwingUtilities class provides a method called invokeLater to queue the 
update on the event-dispatch queue. This method returns immediately so the thread requesting 
the update can continue. Another method called invokeAndWait returns only after the update has 
been applied. 

Schön presents interrupt-transparent synchronization as a technique for synchronizing access to 
operating system kernel data structures. His example shows how it is used for scheduling of real-
time tasks triggered by external events (hardware interrupts). However, this idea can be extended 
to provide general-purpose synchronization in two ways. The first way is for the operating 
system to provide a software interrupt handler that application programs can use by invoking a 
software interrupt to queue their own epilogs. This interrupt could take as its parameter a pointer 
to a function to execute in the epilog that deals with the critical section. The process could block 
and then at the end of the epilog, there could be a scheduling request to restart the blocked 
process. The operating system could define this interrupt vector. This is analogous to Java’s 
invokeAndWait method described above. As previously mentioned, epilogs run at a higher 
priority than application processes, so no application process would be blocked waiting for the 
first process to finish its critical section. 

A second simpler, although perhaps architecturally awkward, method of using this mechanism to 
provide general purpose synchronization is to use the ISR for a particular event queue an epilog 
that performs a data transfer between shared memory areas before the process that needs to be 
awoken is started. When it does start, the information that it needs will be available. Note 
however that the data to copy may not be ready if a lower priority producer process overran its 
quantum (real-time failure) and has not fully prepared the data it wishes to transmit. To deal with 
this case, the lower priority process can set a flag that indicates whether the new data is ready. 
The ISR that triggers the dependent process could make this check before copying. This method 
only works if the epilog has access to the address spaces of both the producer and consumer 
processes. 

3.3 An Efficient Semaphore Implementation 

A more conventional method of synchronizing access to shared memory is through the use of 
semaphores. The EMERALDS operating system implements a high performance blocking 
semaphore that is designed to reduce the number of context switches on a uniprocessor [9]. 
Zuberi and Shin state that as much as 40-50% of the overhead of locking and unlocking 
semaphores is due to context switching. 

Consider the case, under a conventional semaphore implementation, where there is a thread T1 
that has locked semaphore S. Suppose some event causes a context switch to thread T2. T2 
attempts to lock semaphore S, but it is already locked so T2 is blocked. This causes a context 
switch back to T1 which eventually unlocks S. The unlocking of S causes a context switch back 
to T2, which is waiting on S. As a result of locking and unlocking S, two context switches were 
performed. 

The method behind the EMERALDS approach is to avoid the first context switch to T2 because 
T2 will need to lock semaphore S that is already locked by T1. In order for EMERALDS to know 
which lock T2 will need next, the system call to acquire a lock on a semaphore takes an 
additional parameter – the next semaphore needed. This way, when an event would normally 
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cause a context switch to T2, a check is made to see if the next lock it needs to acquire is not 
available. If this is the case, the context switch to T2 is delayed and T2 is placed directly on the 
wait queue for that semaphore. Otherwise, the context switch is made normally. Using this 
approach, one context switch from the lock/unlock pair is saved if the next lock needed is 
unavailable. EMERALDS implements a code parser to instrument application code with this 
additional information. If the next semaphore to be locked cannot be determined by the code 
parser, the action taken by EMERALDS reverts to the traditional semaphore approach. 

This implementation is specifically geared for embedded systems because it requires that the set 
of semaphores in the system be fixed. This assumption does not pose a problem for an embedded 
real-time system because of the special-purpose nature of the system; the set of semaphores is 
known. This synchronization method is compatible with priority scheduling with priority 
inheritance. 

3.4 Wait-Free Synchronization 

Another efficient synchronization approach in recent research is the use of wait-free 
synchronization [10]. In a system that supports wait-free sharing, threads or other independent 
entities of execution need never block before accessing shared structures. The operating system 
provides wait-free synchronized objects through the use of special atomic CPU instructions. 
Herlihy explains the differences in synchronization capability of atomic CPU instructions such as 
set on an atomic register, test&set, and compare&swap. 

Wait-free objects have an associated consensus number. Herlihy defines a consensus number to 
be the maximum number of processes for which the object can solve a simple consensus 
problem. Objects of lesser consensus numbers cannot be composed to make an object with a 
higher consensus number. An atomic register has only a consensus number of 1, while stacks and 
queues has consensus number 2, and compare&swap registers have an infinite consensus 
number. 

This approach provides a low cost method of synchronization. The major drawback, however, is 
that it requires special CPU instructions that support this synchronization. In an embedded real-
time system, the CPU may only support a very basic instruction set. 

4 Conclusion 
In this paper, we have presented a survey of recent research on the topic of embedded real-time 
operating systems in the subareas of scheduling and synchronization. The research on scheduling 
presents three things. First, it provides a way to analyze tasks for schedulability. Second, a 
combination of RMS and EDF scheduling creates a balance between static and dynamic 
scheduling to provide for greater utilization and reduction in scheduling overhead. Third, a 
hybrid of preemptive and non-preemptive scheduling techniques give the flexibility of both 
within the same operating system environment. 

The research on synchronization presents ways to improve operating system performance. 
Interrupt-transparent synchronization, used by some members of the PURE family of operating 
systems, improves system response by keeping interrupts enabled while accessing shared 
memory. This approach can be extended to provide application level synchronization. The 
blocking semaphore implementation used by EMERALDS reduces the number of context 
switches when blocking and unblocking by using knowledge of the next semaphore that a thread 
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needs to lock before making a blocking call. Last, the lock-free and wait-free methods of 
synchronization provide alternate ways of controlling access to shared memory in a real-time 
environment. 
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