CSE 105: Introduction to the Theory of Computation Winter 2000
Problem Set 2 Solution

Instructor: Daniele Micciancio Jan. 24, 2000

In this homework set, we always use the alphabet ¥ = {a, b}.

Problem 1

Use the construction shown in class (or other equivalent construction) to convert the
following NFA N to DFA. Give your answer as a state transition diagram. (You do
not need to include in your answer the states that cannot be reached from the start
state). Solution: The DFA obtained applying the construction in the book has 16

o
~<
|

Figure 1: A nondeterministic finite automaton N

b

states, but some of them cannot be reached from the start state on any input. The
following diagram shows only the states that can be reached from the start state:

a
\

0=, @D,

a

Figure 2: The deterministic finite automaton of N



Problem 2

Use the method discussed in class (or equivalent method) to find NFAs that accept the
the languages corresponding to the following regular expressions. Show intermediate
steps in the construction. (You can omit a few of the minor steps.)

a. (aaa)* Ub(ab)*

Solution: Here we show only the final result. If you are not sure about the
intermediate steps, please consult the book or your TA /instructor. The final
NFA is given by:

€

O~ C—+0=-0=0=-0-

- Qx
O—=-0O H©ﬂ O*-0O—-0*0

€

Figure 3: The nondeterministic finite automaton accepting (ab U ba)*.

b. (abU ba)*
Solution: The final NFA is given by:

Figure 4: The nondeterministic finite automaton accepting (ab U ba)*.



Problem 3

Use the method discussed in class (or the method from the book) to find a regular
expression that describes the language accepted by the NFA from problem 1. Show the
intermediate steps of the computation. (You can simplify the intermediate expressions
as well as the final answer using simple identities like € - ¢ = a and a* Ua = a*.)
Solution: We first add a new start state gy with € transition to ¢;, and a single
accepting state g5 with e transitions from ¢3 and ¢g4. Then, if we remove states
q1, Q2,93 and g4 one after the other, we get a GNFA with a single transition from g
to g5 with label:
a(ba)*a* U a(ba)*b*

This regular expression is equivalent to the original NFA from Problem 1.

Problem 4

Prove that for every regular expression R there exists another regular expression R’
such that the language recognized by R’ is the complement of the language recognized
by R, i.e., L(R') = ¥* — L(R). (You can use the results proved in class and in the
first problem set to solve this problem.)

Proof First notice that given a regular expression R, one can build a NFA N rec-
ognizing the same language (see Lemma 1.29 in the book). This automaton, can be
transformed into an equivalent DFA M (See theorem 1.19). At this point we have a
DFA M recognizing the language L(R), and we want to transform it into a DFA (or
NFA) recognizing the complement of L(R), i.e. X* — L(R). Notice that the language
¥* is regular because it is accepted by the DFA U = ({¢},¢,{q},%,6 : (¢,z) — q)
with a single (accepting) state ¢ that loops on every input symbol. Now you can
use the construction from Problem 3 Problem Set 1, to build a DFA accepting the
language ¥* — L(R). Notice that this construction is equivalent to changing the set
of accepting states on M from F to Q — F (i.e., we are exchanging final and non-
final states). This automaton M’ recognizes the regular language L which is the
complement of L(R). Finally we can use the construction from Lemma 1.32 in the
book to transform D’ into an equivalent regular expression R’ that correspond to the
complement of the language L(R).



Give regular expressions corresponding to the complement of the following regular
expressions:

a. (aUab)*
Solution: First we find the NFA and then convert it to DFA.

b ﬁ@%:@
—O0O—0
2 0D

Figure 5: NFA accepting (a U ab)*. Figure 6: DFA accepting (a U ab)*.

By changing final states, we get the DFA for (a U ab)*.

Figure 7: DFA accepting (ab U ba)*.

The regular expression for language (ab U ba)* is

(aa™b)*b(a U b)*



b. (aa)* U b*
Solution: First we find the NFA and then convert it to DFA.

=0
/ v
€ a
€
b
Figure 8: NFA accepting (aa)* U b*. Figure 9: DFA accepting (aa)* U b*.

By changing final states, we get the DFA for (aa)* U b*.

a,b

Figure 10: DFA accepting (aa)* U b*.

The regular expression for language (aa)* U b* is

a(aa)* U (bb*a U a(aa)* (b U ab))(a Ub)*



