Loops and Recursion

Introduction to Programming and Computational Problem Solving - 2
CSE 8B
Lecture 7
Announcements

• Assignment 3 is due Apr 26, 11:59 PM
 – Upgrade beginning Apr 29, 12:01 AM
• Assignment 4 will be released Apr 26
 – Due May 3, 11:59 PM
• Educational research study
 – Apr 28, weekly survey
Loops and recursion

• while loops
• do-while loops
• for loops
• Recursion is a technique that leads to elegant solutions to problems that are difficult to program using simple loops
 – A recursive method is one that invokes itself directly or indirectly
while loops

• Executes statements repeatedly while the condition is true

```java
while (loop-continuation-condition) {
   // loop-body
   Statement(s);
}
```
while loops

```java
int count = 0;
while (count < 100) {
    System.out.println("Welcome to Java");
    count++;
}
```
Ending a loop with a sentinel value

• Often the number of times a loop is executed is not predetermined
• You may use an input value to signify the end of the loop
• Such a value is known as a sentinel value
• For example, a program reads and calculates the sum of an unspecified number of integers. The input 0 signifies the end of the input.
do-while loops

- Execute the loop body first, then checks the loop continuation condition

```java
do {
    // Loop body
    Statement(s);
} while (loop-continuation-condition);
```
for loops

• A concise syntax for writing loops

```java
for (initial-action; loop-continuation-condition; action-after-each-iteration) {
    // loop body
    Statement(s);
}
```
for loops

```java
int i;
for (i = 0; i < 100; i++) {
    System.out.println("Welcome to Java!");
}
```
for loops

• The initial-action in a for loop can be a list of zero or more comma-separated expressions
• The action-after-each-iteration in a for loop can be a list of zero or more comma-separated statements
• However, it is best practice (less error prone) not to use comma-separated expressions and statements

```java
for (int i = 0, j = 0; (i + j < 10); i++, j++) {
    // Do something
}
```
Scope of local variables

- A variable declared in the initial action part of a for loop header has its scope in the entire loop.
- A variable declared inside a for loop body has its scope limited in the loop body from its declaration and to the end of the block that contains the variable.

```java
public static void method1() {
  for (int i = 1; i < 10; i++) {
    int j;
  }
}
```

The scope of `i` is limited to the for loop body.

The scope of `j` is limited to the block that contains the declaration of `j`.
Scope of local variables

// Fine with no errors
public static void correctMethod() {
 int x = 1;
 int y = 1;
 // i is declared
 for (int i = 1; i < 10; i++) {
 x += i;
 }
 // i is declared again
 for (int i = 1; i < 10; i++) {
 y += i;
 }
}
Scope of local variables

// With errors
public static void incorrectMethod() {
 int x = 1; // x is declared
 int y = 1;
 for (int i = 1; i < 10; i++) {
 int x = 0;
 x += i;
 }
}

Compile error: duplicate local variable
Loops and floating-point accuracy

• Remember, calculations involving floating-point numbers are approximated because these numbers are not stored with complete accuracy

• As such, **do not use floating-point values for equality checking in a loop control**

double sum = 0;
double item = 1;
while (item != 0) { // No guarantee item will be 0
 sum += item;
 item -= 0.1;
}
System.out.println(sum);
Infinite loops

• If the loop-continuation-condition in a for loop is omitted, it is implicitly true

```
for ( ; ; ) {
  // Do something
}
```

Equivalent

```
while (true) {
  // Do something
}
```

(a)

(b)
Loops

• The three forms of loop statements, while, do-while, and for, are expressively equivalent
 – You can write a loop in any of these three forms
Loops

• Use the loop form that is most intuitive and comfortable
 – A for loop may be used if the number of repetitions is known
 – A while loop may be used if the number of repetitions is not known
 – A do-while loop can be used to replace a while loop if the loop body must be executed before testing the continuation condition
public class TestBreak {
 public static void main(String[] args) {
 int sum = 0;
 int number = 0;

 while (number < 20) {
 number++;
 sum += number;
 if (sum >= 100)
 break;
 }

 System.out.println("The number is " + number);
 System.out.println("The sum is " + sum);
 }
}

• Immediately terminate the loop

break
continue

- **End the current iteration**
 - Program control goes to the end of the loop body

```java
public class TestContinue {
    public static void main(String[] args) {
        int sum = 0;
        int number = 0;

        while (number < 20) {
            number++;
            if (number == 10 || number == 11)
                continue;
            sum += number;
        }

        System.out.println("The sum is "+ sum);
    }
}
```
Nested loops

• Loops can be nested
• For example, nested for loops are often used to handle two-dimensional data

```java
for (int i = 0; i < numRows; i++) {
    // Handle i-th row
    for (int j = 0; j < numColumns; j++) {
        // Handle j-th column on i-th row
    }
}
```
Recursion

- Recursion is a technique that leads to elegant solutions to problems that are difficult to program using simple loops.
- A recursive method is one that invokes itself directly or indirectly.
Computing factorials

• Example
 \[4! = 4 \times 3 \times 2 \times 1 = 24 \]

• Remember, 0! = 1 (and 1! = 1)

• As a (non-recursive) method
  ```java
  public static long factorial(int n) {
    long nfactorial = 0 == n ? 1 : n;
    for (int i = n - 1; 1 < i; --i) {
      nfactorial *= i;
    }
    return nfactorial;
  }
  ```
Computing factorials

• Alternatively, think recursively

0! = 1
 • Base case or stopping condition

n! = n * (n – 1)!, n > 0
 • (n – 1)! is a subproblem of n! and is a recursive call

• Example

4! = 4 * 3!
4! = 4 * (3 * 2!)
4! = 4 * (3 * (2 * 1!))
4! = 4 * (3 * (2 * (1 * 0!)))
4! = 4 * (3 * (2 * (1 * 1)))
4! = 4 * (3 * 2)
4! = 4 * 6
4! = 24
Computing factorials

0! = 1 \hspace{1cm} \text{factorial}(0) = 1
n! = n \times (n-1)!, \text{ n > 0} \hspace{1cm} \text{factorial}(n) = n \times \text{factorial}(n - 1)

• As a recursive method
 \begin{verbatim}
 public static long factorial(int n) {
 if (0 == n) { // Base case
 return 1;
 }
 else { // Recursive call
 return n * factorial(n - 1);
 }
 }
 \end{verbatim}
Computing factorials

• Example

| 0! = 1 |
| n! = n * (n - 1)!, n > 0 |

\[
egin{align*}
4! & = 4 \times 3! \\
4! & = 4 \times (3 \times 2!) \\
4! & = 4 \times (3 \times (2 \times 1!)) \\
4! & = 4 \times (3 \times (2 \times (1 \times 0!))) \\
4! & = 4 \times (3 \times (2 \times (1 \times 1))) \\
4! & = 4 \times (3 \times (2 \times 1)) \\
4! & = 4 \times (3 \times 2) \\
4! & = 4 \times 6 \\
4! & = 24
\end{align*}
\]

| \text{factorial}(0) = 1 |
| \text{factorial}(n) = n \times \text{factorial}(n - 1) |

\[
\begin{align*}
\text{factorial}(4) & = 4 \times \text{factorial}(3) \\
\text{factorial}(4) & = 4 \times (3 \times \text{factorial}(2)) \\
\text{factorial}(4) & = 4 \times (3 \times (2 \times \text{factorial}(1))) \\
\text{factorial}(4) & = 4 \times (3 \times (2 \times (1 \times \text{factorial}(0)))) \\
\text{factorial}(4) & = 4 \times (3 \times (2 \times (1 \times 1))) \\
\text{factorial}(4) & = 4 \times (3 \times (2 \times 1)) \\
\text{factorial}(4) & = 4 \times (3 \times 2) \\
\text{factorial}(4) & = 4 \times 6 \\
\text{factorial}(4) & = 24
\end{align*}
\]
Trace code

factorial(4)

Executes factorial(4)

```
return 1
factorial(4)
return 4 * factorial(3)
return 3 * factorial(2)
return 2 * factorial(1)
return 1 * factorial(0)
```

Step 9: return 24

Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 4: executes factorial(0)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Space Required for factorial(4)

Space Required for factorial(3)

Space Required for factorial(2)

Space Required for factorial(1)

Stack
Trace code

factorial(4)

Step 0: executes factorial(4)

return 4 * factorial(3)

Executes factorial(3)

Step 5: return 1
Step 6: return 1
Step 7: return 2
Step 8: return 6
Step 4: executes factorial(0)
Trace code

factorial(4)

Step 0: executes factorial(4)

return 4 * factorial(3)

Step 1: executes factorial(3)

return 3 * factorial(2)

Step 2: executes factorial(2)

return 2 * factorial(1)

Step 3: executes factorial(1)

return 1 * factorial(0)

Step 4: executes factorial(0)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Executes factorial(2)

Space Required for factorial(3)

Space Required for factorial(2)

Space Required for factorial(4)

Stack

Main method
Trace code

factorial(4)

Step 0: executes factorial(4)
return 4 * factorial(3)

Step 1: executes factorial(3)
return 3 * factorial(2)

Step 2: executes factorial(2)
return 2 * factorial(1)

Step 3: executes factorial(1)
return 1

Step 4: executes factorial(0)
return 1

Step 5: return 1
Step 6: return 1
Step 7: return 2
Step 8: return 6

Executes factorial(1)

Space Required for factorial(3)
Space Required for factorial(2)
Space Required for factorial(1)

Stack

Main method

CSE 8B, Spring 2023
Trace code

```
factorial(4)
return 1
factorial(4)
return 4 * factorial(3)
return 3 * factorial(2)
return 2 * factorial(1)
return 1 * factorial(0)
```

Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 4: executes factorial(0)

Executes factorial(0)

Space Required for factorial(0)
Space Required for factorial(1)
Space Required for factorial(2)
Space Required for factorial(3)
Space Required for factorial(4)
Main method

Main method

3

Space Required for factorial(3)
Space Required for factorial(2)
Space Required for ...
Space Required for factorial(2)
Space Required for factorial(1)
Space Required for factorial(0)
Stack
Trace code

```
return 1
factorial(4)
return 4 * factorial(3)
return 3 * factorial(2)
return 2 * factorial(1)
return 1 * factorial(0)
```

Step 4: executes `factorial(0)`

Step 3: executes `factorial(1)`

Step 2: executes `factorial(2)`

Step 1: executes `factorial(3)`

Step 0: executes `factorial(4)`

Stack

<table>
<thead>
<tr>
<th>Stack</th>
<th>Space Required for factorial(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Space Required for factorial(1)</td>
</tr>
<tr>
<td></td>
<td>Space Required for factorial(2)</td>
</tr>
<tr>
<td></td>
<td>Space Required for factorial(3)</td>
</tr>
<tr>
<td></td>
<td>Space Required for factorial(4)</td>
</tr>
<tr>
<td></td>
<td>Main method</td>
</tr>
</tbody>
</table>
Trace code

```
factorial(4)
return 4 * factorial(3)
return 3 * factorial(2)
return 2 * factorial(1)
return 1 * factorial(0)
```

Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 4: executes factorial(0)

Step 5: return 1

returns factorial(0)
Trace code

```
returns factorial(1)
```

```
factorial(4)
```

```
return 4 * factorial(3)
```

```
return 3 * factorial(2)
```

```
return 2 * factorial(1)
```

```
return 1 * factorial(0)
```

Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 4: executes factorial(0)

Step 5: return 1

Step 6: return 1
Trace code

factorial(4)

Step 0: executes factorial(4)

return 4 * factorial(3)

Step 1: executes factorial(3)

return 3 * factorial(2)

Step 2: executes factorial(2)

return 2 * factorial(1)

Step 3: executes factorial(1)

return 1 * factorial(0)

Step 4: executes factorial(0)

returns factorial(2)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Space Required for factorial(4)

Space Required for factorial(3)

Space Required for factorial(2)

Stack

Main method
Trace code

```
return 4 * factorial(3)
return 3 * factorial(2)
return 2 * factorial(1)
return 1 *
```

Step 5: return 1
Step 6: return 1
Step 7: return 2
Step 8: return 6

Step 4: executes factorial(0)

returns factorial(3)

Main method

Space Required for factorial(3)
Space Required for factorial(4)
Main method

Stack
factorial(4)

Step 0: executes factorial(4)
return 4 * factorial(3)

Step 1: executes factorial(3)
return 3 * factorial(2)

Step 2: executes factorial(2)
return 2 * factorial(1)

Step 3: executes factorial(1)
return 1 * factorial(0)

Step 4: executes factorial(0)
return 1

Step 5: return 1
Step 6: return 1
Step 7: return 2
Step 8: return 6
Step 9: return 24

returns factorial(4)
Trace stack

CSE 8B, Spring 2023
Stack overflow

• Deep recursion may result in stack overflow
• If recursion does not reduce the problem in a manner that allows it to eventually converge into the base case or a base case is not specified, infinite recursion can occur
 – Example
    ```java
    public static long factorial(int n) {
      // Mistakenly omit base case
      return n * factorial(n - 1);
    }
    ```
 • Results in stack overflow
Computing factorials

- As a recursive method
  ```java
  public static long factorial(int n) {
      if (0 == n) {
          // Base case
          return 1;
      } else {
          // Recursive call
          return n * factorial(n - 1);
      }
  }
  ```
- As a non-recursive method
  ```java
  public static long factorial(int n) {
      long nfactorial = 0 == n ? 1 : n;
      for (int i = n - 1; 1 < i; --i) {
          nfactorial *= i;
      }
      return nfactorial;
  }
  ```

A recursive method is one that invokes itself directly or indirectly.

Direct recursion

Recursive algorithms can be replaced with non-recursive counterparts. However, some problems are inherently recursive, and difficult to solve without using recursion.
Recursion in practice

- In practice, recursive methods are used to efficiently solve problems with recursive structures
 - Example problem: find the size of a directory
Finding the directory size

- The size of a directory is the sum of the sizes of all files in the directory.
- A directory may contain subdirectories.
- Suppose a directory contains files and subdirectories.
- The size of the directory can be defined recursively as

\[
\text{size}(d) = \text{size}(f_1) + \text{size}(f_2) + \ldots + \text{size}(f_m) + \text{size}(d_1) + \text{size}(d_2) + \ldots + \text{size}(d_n)
\]
Characteristics of recursion

• All recursive methods have the following characteristics
 – The method is implemented using an if-else (or a switch) statement that leads to **different cases**
 – One or more **base cases** (the simplest case) are used to stop recursion
 – Every recursive call **reduces** the original problem, bringing it increasingly **closer to a base case** until it becomes that case

• In general, to solve a problem using recursion, you break it into subproblems
 – If a subproblem resembles the original problem, you can apply the same approach to solve the subproblem recursively
 – This subproblem is almost the same as the original problem in nature with a smaller size
Recursion vs. iteration

• Recursion is an alternative form of program control
• It is essentially repetition without a loop
• Recursion bears substantial overhead
 – Each time the program calls a method, the system must assign space for all of the method’s local variables and parameters
 – This can consume considerable memory and requires extra time to manage the additional space
Recursion vs. iteration

• Recursive algorithms can be replaced with non-recursive counterparts
 – If performance is a concern, then avoid using recursion
 – However, some problems are inherently recursive, and difficult to solve without using recursion

• Use whichever approach can best develop an intuitive solution that naturally mirrors the problem
 – If an iterative solution is obvious, then use it
Next Lecture

• Arrays