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Announcements

• Assignment 3 is due Apr 26, 11:59 PM

– Upgrade beginning Apr 29, 12:01 AM

• Assignment 4 will be released Apr 26

– Due May 3, 11:59 PM

• Educational research study

– Apr 28, weekly survey
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Loops and recursion

• while loops

• do-while loops

• for loops

• Recursion is a technique that leads to elegant 
solutions to problems that are difficult to 
program using simple loops

– A recursive method is one that invokes itself 
directly or indirectly
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while loops

• Executes statements repeatedly while the 
condition is true
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while (loop-continuation-condition) {
// loop-body
Statement(s);

}



while loops
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int count = 0;
while (count < 100) {
System.out.println("Welcome to Java");
count++;

}



Ending a loop with a sentinel value

• Often the number of times a loop is executed 
is not predetermined

• You may use an input value to signify the end 
of the loop

• Such a value is known as a sentinel value

• For example, a program reads and calculates 
the sum of an unspecified number of integers. 
The input 0 signifies the end of the input. 
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do-while loops

• Execute the loop body first, then checks the 
loop continuation condition
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do {
// Loop body
Statement(s);

} while (loop-continuation-condition);



for loops

• A concise syntax for writing loops
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for (initial-action; loop-continuation-condition; 
action-after-each-iteration) {
// loop body
Statement(s);

}



for loops
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int i;
for (i = 0; i < 100; i++) {

System.out.println( 
"Welcome to Java!"); 

}



for loops

• The initial-action in a for loop can be a list of 
zero or more comma-separated expressions

• The action-after-each-iteration in a for loop can 
be a list of zero or more comma-separated 
statements

• However, it is best practice (less error prone) not 
to use comma-separated expressions and 
statements
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for (int i = 0, j = 0; (i + j < 10); i++, j++) {
// Do something

}



 

public static void method1() { 

  . 

  . 

  for (int i = 1; i < 10; i++) { 

    . 

    . 

    int j; 

    . 

    . 

    . 

  } 

} 

 

The scope of j 

 

 

The scope of i 

 

 

Scope of local variables

• A variable declared in the initial action part of a for
loop header has its scope in the entire loop

• A variable declared inside a for loop body has its 
scope limited in the loop body from its declaration and 
to the end of the block that contains the variable
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Scope of local variables
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// Fine with no errors

public static void correctMethod() {

int x = 1;

int y = 1;

// i is declared 

for (int i = 1; i < 10; i++) {

x += i;

}

// i is declared again

for (int i = 1; i < 10; i++) {

y += i;

}

}



Scope of local variables
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// With errors

public static void incorrectMethod() {

int x = 1; // x is declared

int y = 1;

for (int i = 1; i < 10; i++) {

int x = 0;

x += i;

}

}
Compile error: duplicate local variable



Loops and floating-point accuracy

• Remember, calculations involving floating-point 
numbers are approximated because these 
numbers are not stored with complete accuracy

• As such, do not use floating-point values for 
equality checking in a loop control
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double sum = 0;
double item = 1;
while (item != 0) { // No guarantee item will be 0

sum += item;
item -= 0.1;

}
System.out.println(sum);



Infinite loops

• If the loop-continuation-condition in a for loop 
is omitted, it is implicitly true
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 for ( ; ; ) { 
  // Do something 

} 

  
(a)  

Equivalent while (true) { 

  // Do something 

}  

 

  
(b)  



Loops

• The three forms of loop statements, while, 
do-while, and for, are expressively 
equivalent

– You can write a loop in any of these three forms
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 while (loop-continuation-condition) { 
  // Loop body 

} 

 

  
(a)  

Equivalent 

(b)  

for ( ; loop-continuation-condition; ) { 

  // Loop body 

} 

 

  

 for (initial-action;  
     loop-continuation-condition;  

     action-after-each-iteration) { 

  // Loop body; 

} 

 

 
(a)  

Equivalent 

(b)  

initial-action;  

while (loop-continuation-condition) {  

  // Loop body; 

  action-after-each-iteration; 

} 

 

  



Loops

• Use the loop form that is most intuitive and 
comfortable

– A for loop may be used if the number of 
repetitions is known

– A while loop may be used if the number of 
repetitions is not known

– A do-while loop can be used to replace a while
loop if the loop body must be executed before 
testing the continuation condition
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 public class TestBreak { 
  public static void main(String[] args) { 

    int sum = 0; 

    int number = 0; 

 

    while (number < 20) { 

      number++; 

      sum += number; 

      if (sum >= 100)  

        break; 

    } 

 

    System.out.println("The number is " + number); 

    System.out.println("The sum is " + sum); 

  } 

} 

 

break

• Immediately terminate the loop
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 public class TestContinue { 
  public static void main(String[] args) { 

    int sum = 0; 

    int number = 0; 

 

    while (number < 20) { 

      number++; 

      if (number == 10 || number == 11)  

        continue; 

      sum += number; 

    } 

 

    System.out.println("The sum is " + sum); 

  } 

} 

 

continue

• End the current iteration

– Program control goes to the end of the loop body
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Nested loops

• Loops can be nested

• For example, nested for loops are often used 
to handle two-dimensional data

for (int i = 0; i < numRows; i++) {

// Handle i-th row

for (int j = 0; j < numColumns; j++) {

// Handle j-th column on i-th row

}

}
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Recursion

• Recursion is a technique that leads to elegant 
solutions to problems that are difficult to 
program using simple loops

• A recursive method is one that invokes itself 
directly or indirectly
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Computing factorials

• Example
4! = 4 * 3 * 2 * 1 = 24

• Remember, 0! = 1 (and 1! = 1)

• As a (non-recursive) method
public static long factorial(int n) {
long nfactorial = 0 == n ? 1 : n;
for (int i = n - 1; 1 < i; --i) {
nfactorial *= i;

}
return nfactorial;

}
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Computing factorials

• Alternatively, think recursively

0! = 1
• Base case or stopping condition

n! = n * (n – 1)!; n > 0
• (n – 1)! is a subproblem of n! and is a recursive call

• Example

4! = 4 * 3!

4! = 4 * (3 * 2!)

4! = 4 * (3 * (2 * 1!))

4! = 4 * (3 * (2 * (1 * 0!)))

4! = 4 * (3 * (2 * (1 * 1)))

4! = 4 * (3 * (2 * 1))

4! = 4 * (3 * 2)

4! = 4 * 6

4! = 24
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Computing factorials

0! = 1 factorial(0) = 1

n! = n * (n – 1)!; n > 0 factorial(n) = n * factorial(n – 1)

• As a recursive method
public static long factorial(int n) {
if (0 == n) {

// Base case
return 1;

}
else {

// Recursive call
return n * factorial(n – 1);

}
}
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Computing factorials

• Example
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4! = 4 * 3!
4! = 4 * (3 * 2!)
4! = 4 * (3 * (2 * 1!))
4! = 4 * (3 * (2 * (1 * 0!)))
4! = 4 * (3 * (2 * (1 * 1)))
4! = 4 * (3 * (2 * 1))
4! = 4 * (3 * 2)
4! = 4 * 6
4! = 24

factorial(4) = 4 * factorial(3)
factorial(4) = 4 * (3 * factorial(2))
factorial(4) = 4 * (3 * (2 * factorial(1)))
factorial(4) = 4 * (3 * (2 * (1 * factorial(0))))
factorial(4) = 4 * (3 * (2 * (1 * 1)))
factorial(4) = 4 * (3 * (2 * 1))
factorial(4) = 4 * (3 * 2)
factorial(4) = 4 * 6
factorial(4) = 24

0! = 1
n! = n * (n – 1)!; n > 0

factorial(0) = 1
factorial(n) = n * factorial(n – 1)



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

Executes factorial(4)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 
Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

Executes factorial(3)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

Executes factorial(2)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

Executes factorial(1)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

Executes factorial(0)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(0) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

returns 1

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(0) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

returns factorial(0)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(0) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

returns factorial(1)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

returns factorial(2)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

returns factorial(3)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 

Space  Required 

for factorial(3) 

Stack 



Trace code
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return 1 

factorial(4) 

return 4 * factorial(3) 

return 3 * factorial(2) 

return 2 * factorial(1) 

return 1 * factorial(0) 

Step 9: return 24 
Step 0: executes factorial(4) 

Step 1: executes factorial(3) 

Step 2: executes factorial(2) 

Step 3: executes factorial(1) 

Step 5: return 1 

Step 6: return 1 

Step 7: return 2 

Step 8: return 6 

Step 4: executes factorial(0) 

returns factorial(4)

 

Main method 

3 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(4) 

4 

Space  Required 

for factorial(3) 

Space  Required 

for factorial(2) 

Space  Required 

for factorial(1) 

Space  Required 

for factorial(4) 

5 
Stack 



Trace stack
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Space  Required

for factorial(4)
1 Space  Required

for factorial(4)

2 Space  Required

for factorial(3)

Space  Required

for factorial(4)

3

Space  Required

for factorial(3)

Space  Required

for factorial(2)

Space  Required

for factorial(4)

4

Space  Required

for factorial(3)

Space  Required

for factorial(2)

Space  Required

for factorial(1)

Space  Required

for factorial(4)

5

Space  Required

for factorial(3)

Space  Required

for factorial(2)

Space  Required

for factorial(1)

Space  Required

for factorial(0)

Space  Required

for factorial(4)

6

Space  Required

for factorial(3)

Space  Required

for factorial(2)

Space  Required

for factorial(1)

Space  Required

for factorial(4)

7

Space  Required

for factorial(3)

Space  Required

for factorial(2)

Space  Required

for factorial(4)

8 Space  Required

for factorial(3)

Space  Required

for factorial(4)
9



Stack overflow

• Deep recursion may result in stack overflow

• If recursion does not reduce the problem in a 
manner that allows it to eventually converge into 
the base case or a base case is not specified, 
infinite recursion can occur
– Example

public static long factorial(int n) {
// Mistakenly omit base case
return n * factorial(n – 1);

}

• Results in stack overflow
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Computing factorials

• As a recursive method
public static long factorial(int n) {
if (0 == n) {
// Base case
return 1;

}
else {
// Recursive call
return n * factorial(n – 1);

}
}

• As a non-recursive method
public static long factorial(int n) {
long nfactorial = 0 == n ? 1 : n;
for (int i = n - 1; 1 < i; --i) {
nfactorial *= i;

}
return nfactorial;

}
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Direct recursion

Recursive algorithms can 
be replaced with non-
recursive counterparts.  
However, some problems 
are inherently recursive, 
and difficult to solve 
without using recursion.

A recursive method is 
one that invokes itself 
directly or indirectly



Recursion in practice

• In practice, recursive methods are used to 
efficiently solve problems with recursive 
structures

– Example problem: find the size of a directory
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directory 

 

... 

 

1f

1 

 

2f

1 

 

mf

1 

 

1d

1 

 

2d

1 

 

nd

1 

 

... 

 



Finding the directory size

• The size of a directory is the sum of the sizes of all files 
in the directory

• A directory  may contain subdirectories

• Suppose a directory contains files and subdirectories

• The size of the directory can be defined recursively as
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directory 

 

... 

 

1f

1 

 

2f

1 

 

mf

1 

 

1d

1 

 

2d

1 

 

nd

1 

 

... 

 



Characteristics of recursion

• All recursive methods have the following characteristics
– The method is implemented using an if-else (or a switch) 

statement that leads to different cases
– One or more base cases (the simplest case) are used to stop 

recursion
– Every recursive call reduces the original problem, bringing it 

increasingly closer to a base case until it becomes that case

• In general, to solve a problem using recursion, you break it 
into subproblems
– If a subproblem resembles the original problem, you can apply 

the same approach to solve the subproblem recursively
– This subproblem is almost the same as the original problem in 

nature with a smaller size
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Recursion vs. iteration

• Recursion is an alternative form of program 
control

• It is essentially repetition without a loop

• Recursion bears substantial overhead
– Each time the program calls a method, the system 

must assign space for all of the method’s local 
variables and parameters

– This can consume considerable memory and 
requires extra time to manage the additional 
space
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Recursion vs. iteration

• Recursive algorithms can be replaced with non-
recursive counterparts
– If performance is a concern, then avoid using 

recursion

– However, some problems are inherently recursive, and 
difficult to solve without using recursion

• Use whichever approach can best develop an 
intuitive solution that naturally mirrors the 
problem
– If an iterative solution is obvious, then use it
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Next Lecture

• Arrays
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