
Loops and Recursion

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 7

Announcements

• Assignment 3 is due Apr 26, 11:59 PM

– Upgrade beginning Apr 29, 12:01 AM

• Assignment 4 will be released Apr 26

– Due May 3, 11:59 PM

• Educational research study

– Apr 28, weekly survey

CSE 8B, Spring 2023 2

Loops and recursion

• while loops

• do-while loops

• for loops

• Recursion is a technique that leads to elegant
solutions to problems that are difficult to
program using simple loops

– A recursive method is one that invokes itself
directly or indirectly

CSE 8B, Spring 2023 3

while loops

• Executes statements repeatedly while the
condition is true

CSE 8B, Spring 2023 4

while (loop-continuation-condition) {
// loop-body
Statement(s);

}

while loops

CSE 8B, Spring 2023 5

int count = 0;
while (count < 100) {
System.out.println("Welcome to Java");
count++;

}

Ending a loop with a sentinel value

• Often the number of times a loop is executed
is not predetermined

• You may use an input value to signify the end
of the loop

• Such a value is known as a sentinel value

• For example, a program reads and calculates
the sum of an unspecified number of integers.
The input 0 signifies the end of the input.

CSE 8B, Spring 2023 6

do-while loops

• Execute the loop body first, then checks the
loop continuation condition

CSE 8B, Spring 2023 7

do {
// Loop body
Statement(s);

} while (loop-continuation-condition);

for loops

• A concise syntax for writing loops

CSE 8B, Spring 2023 8

for (initial-action; loop-continuation-condition;
action-after-each-iteration) {
// loop body
Statement(s);

}

for loops

CSE 8B, Spring 2023 9

int i;
for (i = 0; i < 100; i++) {

System.out.println(
"Welcome to Java!");

}

for loops

• The initial-action in a for loop can be a list of
zero or more comma-separated expressions

• The action-after-each-iteration in a for loop can
be a list of zero or more comma-separated
statements

• However, it is best practice (less error prone) not
to use comma-separated expressions and
statements

CSE 8B, Spring 2023 10

for (int i = 0, j = 0; (i + j < 10); i++, j++) {
// Do something

}

public static void method1() {

 .

 .

 for (int i = 1; i < 10; i++) {

 .

 .

 int j;

 .

 .

 .

 }

}

The scope of j

The scope of i

Scope of local variables

• A variable declared in the initial action part of a for
loop header has its scope in the entire loop

• A variable declared inside a for loop body has its
scope limited in the loop body from its declaration and
to the end of the block that contains the variable

CSE 8B, Spring 2023 11

Scope of local variables

CSE 8B, Spring 2023 12

// Fine with no errors

public static void correctMethod() {

int x = 1;

int y = 1;

// i is declared

for (int i = 1; i < 10; i++) {

x += i;

}

// i is declared again

for (int i = 1; i < 10; i++) {

y += i;

}

}

Scope of local variables

CSE 8B, Spring 2023 13

// With errors

public static void incorrectMethod() {

int x = 1; // x is declared

int y = 1;

for (int i = 1; i < 10; i++) {

int x = 0;

x += i;

}

}
Compile error: duplicate local variable

Loops and floating-point accuracy

• Remember, calculations involving floating-point
numbers are approximated because these
numbers are not stored with complete accuracy

• As such, do not use floating-point values for
equality checking in a loop control

CSE 8B, Spring 2023 14

double sum = 0;
double item = 1;
while (item != 0) { // No guarantee item will be 0

sum += item;
item -= 0.1;

}
System.out.println(sum);

Infinite loops

• If the loop-continuation-condition in a for loop
is omitted, it is implicitly true

CSE 8B, Spring 2023 15

 for (; ;) {
 // Do something

}

(a)

Equivalent while (true) {

 // Do something

}

(b)

Loops

• The three forms of loop statements, while,
do-while, and for, are expressively
equivalent

– You can write a loop in any of these three forms

CSE 8B, Spring 2023 16

 while (loop-continuation-condition) {
 // Loop body

}

(a)

Equivalent

(b)

for (; loop-continuation-condition;) {

 // Loop body

}

 for (initial-action;
 loop-continuation-condition;

 action-after-each-iteration) {

 // Loop body;

}

(a)

Equivalent

(b)

initial-action;

while (loop-continuation-condition) {

 // Loop body;

 action-after-each-iteration;

}

Loops

• Use the loop form that is most intuitive and
comfortable

– A for loop may be used if the number of
repetitions is known

– A while loop may be used if the number of
repetitions is not known

– A do-while loop can be used to replace a while
loop if the loop body must be executed before
testing the continuation condition

CSE 8B, Spring 2023 17

 public class TestBreak {
 public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 sum += number;

 if (sum >= 100)

 break;

 }

 System.out.println("The number is " + number);

 System.out.println("The sum is " + sum);

 }

}

break

• Immediately terminate the loop

CSE 8B, Spring 2023 18

 public class TestContinue {
 public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 if (number == 10 || number == 11)

 continue;

 sum += number;

 }

 System.out.println("The sum is " + sum);

 }

}

continue

• End the current iteration

– Program control goes to the end of the loop body

CSE 8B, Spring 2023 19

Nested loops

• Loops can be nested

• For example, nested for loops are often used
to handle two-dimensional data

for (int i = 0; i < numRows; i++) {

// Handle i-th row

for (int j = 0; j < numColumns; j++) {

// Handle j-th column on i-th row

}

}

CSE 8B, Spring 2023 20

Recursion

• Recursion is a technique that leads to elegant
solutions to problems that are difficult to
program using simple loops

• A recursive method is one that invokes itself
directly or indirectly

CSE 8B, Spring 2023 21

Computing factorials

• Example
4! = 4 * 3 * 2 * 1 = 24

• Remember, 0! = 1 (and 1! = 1)

• As a (non-recursive) method
public static long factorial(int n) {
long nfactorial = 0 == n ? 1 : n;
for (int i = n - 1; 1 < i; --i) {
nfactorial *= i;

}
return nfactorial;

}

CSE 8B, Spring 2023 22

Computing factorials

• Alternatively, think recursively

0! = 1
• Base case or stopping condition

n! = n * (n – 1)!; n > 0
• (n – 1)! is a subproblem of n! and is a recursive call

• Example

4! = 4 * 3!

4! = 4 * (3 * 2!)

4! = 4 * (3 * (2 * 1!))

4! = 4 * (3 * (2 * (1 * 0!)))

4! = 4 * (3 * (2 * (1 * 1)))

4! = 4 * (3 * (2 * 1))

4! = 4 * (3 * 2)

4! = 4 * 6

4! = 24
CSE 8B, Spring 2023 23

Computing factorials

0! = 1 factorial(0) = 1

n! = n * (n – 1)!; n > 0 factorial(n) = n * factorial(n – 1)

• As a recursive method
public static long factorial(int n) {
if (0 == n) {

// Base case
return 1;

}
else {

// Recursive call
return n * factorial(n – 1);

}
}

CSE 8B, Spring 2023 24

Computing factorials

• Example

CSE 8B, Spring 2023 25

4! = 4 * 3!
4! = 4 * (3 * 2!)
4! = 4 * (3 * (2 * 1!))
4! = 4 * (3 * (2 * (1 * 0!)))
4! = 4 * (3 * (2 * (1 * 1)))
4! = 4 * (3 * (2 * 1))
4! = 4 * (3 * 2)
4! = 4 * 6
4! = 24

factorial(4) = 4 * factorial(3)
factorial(4) = 4 * (3 * factorial(2))
factorial(4) = 4 * (3 * (2 * factorial(1)))
factorial(4) = 4 * (3 * (2 * (1 * factorial(0))))
factorial(4) = 4 * (3 * (2 * (1 * 1)))
factorial(4) = 4 * (3 * (2 * 1))
factorial(4) = 4 * (3 * 2)
factorial(4) = 4 * 6
factorial(4) = 24

0! = 1
n! = n * (n – 1)!; n > 0

factorial(0) = 1
factorial(n) = n * factorial(n – 1)

Trace code

CSE 8B, Spring 2023 26

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(4)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5
Stack

Trace code

CSE 8B, Spring 2023 27

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(3)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Stack

Trace code

CSE 8B, Spring 2023 28

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(2)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Stack

Trace code

CSE 8B, Spring 2023 29

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(1)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Stack

Trace code

CSE 8B, Spring 2023 30

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(0)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

Trace code

CSE 8B, Spring 2023 31

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns 1

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

Trace code

CSE 8B, Spring 2023 32

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(0)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

Trace code

CSE 8B, Spring 2023 33

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(1)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Stack

Trace code

CSE 8B, Spring 2023 34

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(2)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Stack

Trace code

CSE 8B, Spring 2023 35

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(3)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Stack

Trace code

CSE 8B, Spring 2023 36

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(4)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5
Stack

Trace stack

CSE 8B, Spring 2023 37

Space Required

for factorial(4)
1 Space Required

for factorial(4)

2 Space Required

for factorial(3)

Space Required

for factorial(4)

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Space Required

for factorial(4)

6

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

7

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

8 Space Required

for factorial(3)

Space Required

for factorial(4)
9

Stack overflow

• Deep recursion may result in stack overflow

• If recursion does not reduce the problem in a
manner that allows it to eventually converge into
the base case or a base case is not specified,
infinite recursion can occur
– Example

public static long factorial(int n) {
// Mistakenly omit base case
return n * factorial(n – 1);

}

• Results in stack overflow

CSE 8B, Spring 2023 38

Computing factorials

• As a recursive method
public static long factorial(int n) {
if (0 == n) {
// Base case
return 1;

}
else {
// Recursive call
return n * factorial(n – 1);

}
}

• As a non-recursive method
public static long factorial(int n) {
long nfactorial = 0 == n ? 1 : n;
for (int i = n - 1; 1 < i; --i) {
nfactorial *= i;

}
return nfactorial;

}

CSE 8B, Spring 2023 39

Direct recursion

Recursive algorithms can
be replaced with non-
recursive counterparts.
However, some problems
are inherently recursive,
and difficult to solve
without using recursion.

A recursive method is
one that invokes itself
directly or indirectly

Recursion in practice

• In practice, recursive methods are used to
efficiently solve problems with recursive
structures

– Example problem: find the size of a directory

CSE 8B, Spring 2023 40

directory

...

1f

1

2f

1

mf

1

1d

1

2d

1

nd

1

...

Finding the directory size

• The size of a directory is the sum of the sizes of all files
in the directory

• A directory may contain subdirectories

• Suppose a directory contains files and subdirectories

• The size of the directory can be defined recursively as

CSE 8B, Spring 2023 41

)(...)()()(...)()()(2121 nm dsizedsizedsizefsizefsizefsizedsize +++++++=

directory

...

1f

1

2f

1

mf

1

1d

1

2d

1

nd

1

...

Characteristics of recursion

• All recursive methods have the following characteristics
– The method is implemented using an if-else (or a switch)

statement that leads to different cases
– One or more base cases (the simplest case) are used to stop

recursion
– Every recursive call reduces the original problem, bringing it

increasingly closer to a base case until it becomes that case

• In general, to solve a problem using recursion, you break it
into subproblems
– If a subproblem resembles the original problem, you can apply

the same approach to solve the subproblem recursively
– This subproblem is almost the same as the original problem in

nature with a smaller size

CSE 8B, Spring 2023 42

Recursion vs. iteration

• Recursion is an alternative form of program
control

• It is essentially repetition without a loop

• Recursion bears substantial overhead
– Each time the program calls a method, the system

must assign space for all of the method’s local
variables and parameters

– This can consume considerable memory and
requires extra time to manage the additional
space

CSE 8B, Spring 2023 43

Recursion vs. iteration

• Recursive algorithms can be replaced with non-
recursive counterparts
– If performance is a concern, then avoid using

recursion

– However, some problems are inherently recursive, and
difficult to solve without using recursion

• Use whichever approach can best develop an
intuitive solution that naturally mirrors the
problem
– If an iterative solution is obvious, then use it

CSE 8B, Spring 2023 44

Next Lecture

• Arrays

CSE 8B, Spring 2023 45

