
Introduction to Java

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 2

Announcements

• Assignment 1 will be released today

– Due Apr 12, 11:59 PM

• Educational research study (extra credit)

– Apr 7, weekly survey (if study starts this week)

CSE 8B, Spring 2023 2

Programs

• Computer programs (i.e., software) are
instructions to the computer

• You tell a computer what to do through
programs

• Computers do not understand human
languages, so you need to use computer
languages to communicate with them

• Programs are written using programming
languages

CSE 8B, Spring 2023 3

Programming languages

• Machine language

• Assembly language

• High-level language

CSE 8B, Spring 2023 4

Programming languages

• Machine language
– Machine language is a set of primitive instructions

built into every computer

– The instructions are in the form of binary code, so you
must enter binary codes for various instructions

– Programming with native machine language is a
tedious process, and the programs are highly difficult
to read and modify

– For example, to add two numbers, you might write an
instruction in binary like this:
1101101010011010

CSE 8B, Spring 2023 5

Programming languages

• Assembly language
– Assembly languages were developed to make

programming easier than machine languages

– Since the computer cannot understand assembly
language, a program called assembler is used to
convert assembly language programs into
machine code

– For example, to add two numbers, you might
write an instruction in assembly code like this:
ADDF3 R1, R2, R3

CSE 8B, Spring 2023 6

Programming languages

• High-level language

– High-level languages are English-like and easier to
learn and program than assembly languages

• For example, the following is a high-level language
statement that computes the area of a circle with
radius 5:
area = 5 * 5 * 3.1415;

CSE 8B, Spring 2023 7

Interpreting/Compiling source code

• A program written in a high-level language is
called a source program or source code

• Because a computer cannot understand a
source program, a source program must be
translated into machine code for execution

• The translation can be done using another
programming tool called an interpreter or a
compiler

CSE 8B, Spring 2023 8

Interpreting source code

• An interpreter reads one statement from the
source code, translates it to the machine code or
virtual machine code, and then executes it right
away

• A statement from the source code may be
translated into several machine instructions

CSE 8B, Spring 2023 9

Compiling source code

• A compiler translates the entire source code
into a machine-code file, and the machine-
code file is then executed

CSE 8B, Spring 2023 10

Java

• The compiler of Java is called javac
– Java source code is compiled into the Java Virtual

Machine (JVM) code called bytecode

• The interpreter of Java is called java
– The bytecode is machine-independent and can run on

any machine that has a Java interpreter, which is part
of the JVM (write once, run anywhere)

CSE 8B, Spring 2023 11

Compile source code, interpret bytecode

Introduction to Java

• Java is:
– a high-level programming language

• Computer-specific details are abstracted

– an object-oriented programming language
• Based on classes

– a strongly typed language
• Programmers must explicitly identify the type of every

variable, method, and object

– a general-purpose programming language
• Not specialized to a particular application domain

– platform independent
• Write a program once and run it on any computer

CSE 8B, Spring 2023 12

Anatomy of a Java program

• Class name

• Main method

• Statements

• Statement terminator

• Reserved words

• Comments

• Blocks

CSE 8B, Spring 2023 13

Class name

• Every Java program must have at least one class
• Each class has a name corresponding to filename
• Naming convention: capitalize the first letter of each

word in the name class (e.g., ComputeArea)
• This class name is Welcome (stored in Welcome.java)

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Spring 2023 14

main method

• In order to run a class, the class must contain a
method named main

• The program is executed from the main method

• This line defines the main method

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Spring 2023 15

Statement

• A statement represents an action or a
sequence of actions

• This is a statement to display the greeting
“Welcome to Java!”

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Spring 2023 16

Java application programming
interface (API) documentation

• Documentation for all Java built-in classes and
methods

• Java 8 API Documentation
https://docs.oracle.com/javase/8/docs/api/

• Java 11 API Documentation
https://docs.oracle.com/en/java/javase/11/docs/api/

• Use the documentation!

CSE 8B, Spring 2023 17

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/en/java/javase/11/docs/api/

println and print

CSE 8B, Spring 2023 18

Statement terminator

• Every statement in Java ends with a semicolon

CSE 8B, Spring 2023 19

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Reserved words

• Reserved words or keywords are words that have a specific
meaning to the compiler and cannot be used for other
purposes in the program

• For example, when the compiler sees the word class, it
understands that the word after class is the name for the
class

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Spring 2023 20

Comments

• Comments make the code more readable by adding details
• Implementation comments are meant for commenting out code or

for comments about the particular implementation
• // comments out everything after it on the line
• The comment delimiters /*...*/ comments out everything

between /* and */

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Spring 2023 21

Blocks

• A pair of braces in a program forms a block
that groups components of a program

public class Test {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Class block

Method block

CSE 8B, Spring 2023 22

Blocks

• Two different block styles

CSE 8B, Spring 2023 23

public class Test

{

 public static void main(String[] args)

 {

 System.out.println("Block Styles");

 }

}

public class Test {

 public static void main(String[] args) {

 System.out.println("Block Styles");

 }

}

End-of-line

style

Next-line

style

Corresponding
braces are
column-aligned

First and last
lines of block
are column-align

Special symbols

Character Name Description

{}

()

[]

//

" "

;

Opening and closing

braces

Opening and closing

parentheses

Opening and closing

brackets

Double slashes

Opening and closing

quotation marks

Semicolon

Denotes a block to enclose statements.

Used with methods.

Denotes an array.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Marks the end of a statement.

CSE 8B, Spring 2023 24

Identifiers

• Identifiers are the names that identify the elements such as classes,
methods, and variables in a program

• An identifier is a sequence of characters that consist of letters,
digits, underscores (_), and dollar signs ($)

• An identifier must start with a letter, an underscore (_), or a dollar
sign ($)

• An identifier cannot start with a digit
• An identifier cannot be a reserved word

– List of reserved words
• https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
• https://docs.oracle.com/javase/specs/jls/se11/html/jls-3.html#jls-3.9

• An identifier cannot be true, false, or null
• An identifier can be of any length

CSE 8B, Spring 2023 25

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
https://docs.oracle.com/javase/specs/jls/se11/html/jls-3.html#jls-3.9

Variable and method names

• Naming convention: Use lowercase. If the
name consists of several words, concatenate
all in one, use lowercase for the first word,
and capitalize the first letter of each
subsequent word in the name

– For example, the variables radius and area, and
the method computeArea.

CSE 8B, Spring 2023 26

Variables

• Variables are used to represent values that
may be changed in the program

CSE 8B, Spring 2023 27

// Compute the first area
radius = 1.0;
area = radius * radius * 3.14159;
System.out.println("The area is " + area + " for radius " +

radius);

// Compute the second area
radius = 2.0;
area = radius * radius * 3.14159;
System.out.println("The area is " + area + " for radius " +

radius);

Declaring variables

CSE 8B, Spring 2023 28

int x; // Declare x to be an

// integer variable

double radius; // Declare radius to

// be a double variable

char a; // Declare a to be a

// character variable

Assignment statements

CSE 8B, Spring 2023 29

x = 1; // Assign 1 to x

radius = 1.0; // Assign 1.0 to radius

a = 'A'; // Assign 'A' to a

Declaring and initializing in one step

CSE 8B, Spring 2023 30

int x = 1;

double radius = 1.0;

char a = 'A';

Named constants

• Naming convention: capitalize all letters in
constants, and use underscores to connect
words

CSE 8B, Spring 2023 31

final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int MAX_VALUE = 3;
final char FIRST_UPPER_CASE = 'A';

Trace a program execution
public class ComputeArea {

/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

CSE 8B, Spring 2023 32

Documentation (or doc or Javadoc) comments
• The comment delimiters /*...*/ comments

out everything between /* and */, including
the * following the begin delimiter /*

• /** indicates this is beginning of a doc
comment

Trace a program execution
public class ComputeArea {

/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

no valueradius

allocate memory

for radius

CSE 8B, Spring 2023 33

Trace a program execution
public class ComputeArea {

/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

no valueradius

memory

no valuearea

allocate memory

for area

CSE 8B, Spring 2023 34

Trace a program execution
public class ComputeArea {

/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

20radius

no valuearea

assign 20 to radius

CSE 8B, Spring 2023 35

Trace a program execution
public class ComputeArea {

/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

20radius

memory

1256.636area

compute area and assign it

to variable area

CSE 8B, Spring 2023 36

Trace a program execution
public class ComputeArea {

/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

20radius

memory

1256.636area

print a message to the

console

CSE 8B, Spring 2023 37

Developing, compiling, and running Java programs

CSE 8B, Spring 2023 38

Welcome.java

Welcome.class

Not java Welcome.class

Programming errors

• Syntax errors

– Detected by the compiler

• The compiler of Java is called javac

• Runtime errors

– Causes the program to abort

• The interpreter of Java is called java

• Logic errors

– Produces incorrect result

CSE 8B, Spring 2023 39

Syntax errors

• If you mistype part of a program, the compiler may issue a syntax error.
The message usually displays the type of the error, the line number where
the error was detected, the code on that line, and the position of the error
within the code.

• For example, following is an error caused by omitting a semicolon at the
end of a statement

Testing.java:8: error: ';' expected
count++

^
1 error

• If you see any compiler errors, then your program did not successfully
compile, and the compiler did not create a .class file. Carefully verify
the program, fix any errors that you detect, and try again.

CSE 8B, Spring 2023 40

Filename:line number Type of error

Position of the error within the code

Syntax errors

• Semantic Errors: In addition to verifying that your program is syntactically
correct, the compiler checks for other basic correctness. For example, the
compiler warns you each time you use a variable that has not been initialized.

Testing.java:8: error: variable count might not have been initialized

count++;

^

Testing.java:9: error: variable count might not have been initialized

System.out.println("Input has " + count + " chars.");

^

2 errors

• Again, your program did not successfully compile, and the compiler did not
create a .class file. Fix the error and try again.

CSE 8B, Spring 2023 41

Position of the error within the code

Position of the error within the code

Runtime errors

Exception in thread "main"

• If you encounter this, see
https://docs.oracle.com/javase/tutorial/getSta
rted/problems/index.html#interpreter

CSE 8B, Spring 2023 42

https://docs.oracle.com/javase/tutorial/getStarted/problems/index.html#interpreter

Java Software Development

Java versions

• The Java roadmap includes long-term support
(LTS) versions, with non-LTS versions along the
way

• Non-LTS versions are unsupported feature
releases, allowing developers to explore features
that may be in the next LTS version

• Best practice is to only use LTS versions
• Current LTS versions

– Java 8 (released Mar 2014, supported until Dec 2030)
– Java 11 (released Sep 2018, supported until Sep 2026)
– Java 17 (released Sep 2021, supported until Sep 2029)

CSE 8B, Spring 2023 44

Not a typo

Used in
CSE 8B

Java Development Kit (JDK)

1. Develop on UCSD Linux Cloud
– https://linuxcloud.ucsd.edu
– Java 11 is already installed and configured on your UCSD Linux

Cloud account

2. Develop on your personal computer
– Download, install, and configure Java SE Development Kit 11,

which is the same version installed and configured on your
UCSD Linux Cloud account

– Important: issues with your personal computer will not excuse
late assignment submissions (or missed prelecture quizzes, etc.)
• Best practice is to save your source code to your UCSD Google Drive,

so you can finish on UCSD Linux Cloud and/or a UCSD computer

• Your source code must compile and run from the
command-line on your UCSD Linux Cloud class account

CSE 8B, Spring 2023 45

Text editor

• Use whatever text editor you want

– Visual Studio Code (highly recommended and used in CSE 8B),
Notepad, Notepad++, vi (or Vim), Emacs, etc.

– Important note: Visual Studio Code will offer to install extensions,
enabling it to be an integrated development environment (IDE)
• Should you choose to do this, the instructional team will not assist you in configuring it

• On UCSD Linux Cloud, dot not install Visual Studio Code Extensions! Linux Cloud will go
down.

• Compile and run from the command line

• Beware of integrated development environments (IDEs) that generate
source code!

– Your source code must compile and run from the command-line on
your UCSD Linux Cloud class account

– Typing all code yourself will best prepare you for the exams

CSE 8B, Spring 2023 46

UCSD Linux Cloud

CSE 8B, Spring 2023 47

UCSD Linux Cloud

• Use your CSE 8B course account, not your
personal account
– Use the Account Lookup Tool

• Also used to find the lab door codes

• Register your CSE 8B course account in Duo
• Do not forget to logout before closing browser

tab/window! Linux Cloud will go down.

CSE 8B, Spring 2023 48

Next lecture

• Numbers and mathematics

CSE 8B, Spring 2023 49

