
Binary File I/O

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 18

Announcements

• Assignment 8 is due today, 11:59 PM
– Upgrade beginning Jun 10, 12:01 AM

• Educational research study
– Jun 9, weekly survey

• Please complete Student Evaluations of Teaching
(SET)
– Replacing Course And Professor Evaluations (CAPE)

• Please complete TA and tutor evaluations
• Assignments 5-8 upgrades due Jun 14, 11:59 PM
• Final exam is Jun 16, 7:00 PM-9:59 PM

CSE 8B, Spring 2023 2

Files

• Files can be classified as either text or binary

– Human readable files are text files

– All other files are binary files

• Java provides many classes for performing text
file I/O and binary file I/O

CSE 8B, Spring 2023 3

File I/O

• Remember, a File object encapsulates the properties of a
file or a path, but does not contain the methods for
reading/writing data from/to a file

• In order to perform I/O, you need to create objects using
appropriate Java I/O classes
– The objects contain the methods for reading/writing data

from/to a file

• Text file I/O
– Use the Scanner class for reading text data from a file

• The JVM converts a file specific encoding to Unicode when reading a
character

– Use the PrintWriter class for writing text data to a file
• The JVM converts Unicode to a file specific encoding when writing a

character

CSE 8B, Spring 2023 4

Binary file I/O

• Binary file I/O does not involve encoding or decoding
and thus is more efficient than text file I/O

• Binary files are independent of the encoding scheme
on the host machine

CSE 8B, Spring 2023 5

When you write a byte to a file, the
original byte is copied into the file.
When you read a byte from a file, the
exact byte in the file is returned.

Binary I/O classes

• The abstract InputStream is the root class for
reading binary data

• The abstract OutputStream is the root class for
writing binary data

CSE 8B, Spring 2023 6

The InputStream class

CSE 8B, Spring 2023 7

java.io.InputStream

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int,
len: int): int

+available(): int

+close(): void

+skip(n: long): long

+markSupported(): boolean

+mark(readlimit: int): void

+reset(): void

Reads the next byte of data from the input stream. The value byte is returned as

an int value in the range 0 to 255. If no byte is available because the end of

the stream has been reached, the value –1 is returned.

Reads up to b.length bytes into array b from the input stream and returns the

actual number of bytes read. Returns -1 at the end of the stream.

Reads bytes from the input stream and stores into b[off], b[off+1], …,
b[off+len-1]. The actual number of bytes read is returned. Returns -1 at the

end of the stream.

Returns the number of bytes that can be read from the input stream.

Closes this input stream and releases any system resources associated with the

stream.

Skips over and discards n bytes of data from this input stream. The actual
number of bytes skipped is returned.

Tests if this input stream supports the mark and reset methods.

Marks the current position in this input stream.

Repositions this stream to the position at the time the mark method was last

called on this input stream.

The value returned is a byte as an int type

https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html

https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html

The OutputStream class

CSE 8B, Spring 2023 8

The value is a byte as an int type

java.io.OutputStream

+write(int b): void

+write(b: byte[]): void

+write(b: byte[], off: int,

len: int): void

+close(): void

+flush(): void

Writes the specified byte to this output stream. The parameter b is an int value.

(byte)b is written to the output stream.

Writes all the bytes in array b to the output stream.

Writes b[off], b[off+1], …, b[off+len-1] into the output stream.

Closes this output stream and releases any system resources associated with the

stream.

Flushes this output stream and forces any buffered output bytes to be written out.

https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/OutputStream.html

https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html

Binary file I/O classes

• FileInputStream/FileOutputStream are for
reading/writing bytes from/to files

• All the methods in FileInputStream and
FileOutputStream are inherited from their superclasses

CSE 8B, Spring 2023 9

The FileInputStream class

• To construct a FileInputStream object, use
the following constructors
public FileInputStream(String filename)

public FileInputStream(File file)

• A java.io.FileNotFoundException will
occur if you attempt to create a
FileInputStream with a nonexistent file

CSE 8B, Spring 2023 10

https://docs.oracle.com/javase/8/docs/api/java/io/FileInputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/FileInputStream.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html

The FileOutputStream class

• To construct a FileOutputStream object, use the following
constructors
public FileOutputStream(String filename)

public FileOutputStream(File file)

public FileOutputStream(String filename, boolean append)

public FileOutputStream(File file, boolean append)

• If the file does not exist, a new file will be created

• If the file already exists, the first two constructors will delete
the current contents in the file

• To retain the current content and append new data into the
file, use the last two constructors by passing true to the
append parameter

CSE 8B, Spring 2023 11

https://docs.oracle.com/javase/8/docs/api/java/io/FileOutputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/FileOutputStream.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html

Binary file I/O using FileInputStream
and FileOutputStream

public class TestFileStream {
public static void main(String[] args) throws IOException {

try (
// Create an output stream to the file
FileOutputStream output = new FileOutputStream("temp.dat");

) {
// Output values to the file
for (int i = 1; i <= 10; i++)

output.write(i);
}

try (
// Create an input stream for the file
FileInputStream input = new FileInputStream("temp.dat");

) {
// Read values from the file
int value;
while ((value = input.read()) != -1)

System.out.print(value + " ");
}

}
}

CSE 8B, Spring 2023 12

Use try-with-resources syntax
because classes implement
AutoClosable interface

Check for end of file

Filter streams

• FileInputStream provides a read method
that can only be used for reading bytes
– If you want to read integers, doubles, or strings,

you need a filter class to wrap the byte input
stream

• Filter streams are streams that filter bytes for
some purpose
– Using a filter class enables you to read integers,

doubles, and strings instead of bytes and
characters

CSE 8B, Spring 2023 13

Binary filter I/O classes

• FilterInputStream and
FilterOutputStream are the base classes
for filtering data

CSE 8B, Spring 2023 14

Binary filter I/O classes

• When you need to process primitive numeric
types, use DataInputStream and
DataOutputStream to filter bytes

CSE 8B, Spring 2023 15

The DataInputStream class

• DataInputStream reads bytes from the stream and converts
them into appropriate primitive type values or strings

• DataInputStream extends FilterInputStream and
implements the DataInput interface

CSE 8B, Spring 2023 16

https://docs.oracle.com/javase/8/docs/api/java/io/DataInputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/DataInputStream.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html

The DataOutputStream class

• DataOutputStream converts primitive type values or strings into bytes and
output the bytes to the stream

• DataOutputStream extends FilterOutputStream and implements the
DataOutput interface

CSE 8B, Spring 2023 17

https://docs.oracle.com/javase/8/docs/api/java/io/DataOutputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/DataOutputStream.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html

Characters and strings in binary I/O

• Remember, a Unicode character consists of two bytes
– The writeChar(char c) method writes the Unicode of

character c to the output
– The writeChars(String s) method writes the Unicode for

each character in the string s to the output

• Remember, an ASCII character consists of one byte, which
is stored in the lower byte of a Unicode character
– The writeByte(int v) method writes the lowest byte of

integer v to the output (i.e., the higher three bytes of the
integer are discarded)

– The writeBytes(String s) method writes the lower byte
of the Unicode of the characters in the string s to the output
(i.e., the higher byte of the Unicode of the characters are
discarded)

CSE 8B, Spring 2023 18

Characters and strings in binary I/O

• Unicode Transformation Format (UTF)

– The writeUTF(String s) method writes the
string s in UTF

• UTF is coding scheme for efficiently compressing a
string of Unicode characters

CSE 8B, Spring 2023 19

Binary file I/O using DataInputStream
and DataOutputStream

public class TestDataStream {
public static void main(String[] args) throws IOException {
try (// Create an output stream for file temp.dat

DataOutputStream output =
new DataOutputStream(new FileOutputStream("temp.dat"));

) {
// Write student test scores to the file
output.writeUTF("John");
output.writeDouble(85.5);
output.writeUTF("Jim");
output.writeDouble(185.5);
output.writeUTF("George");
output.writeDouble(105.25);

}

try (// Create an input stream for file temp.dat
DataInputStream input =

new DataInputStream(new FileInputStream("temp.dat"));
) {

// Read student test scores from the file
System.out.println(input.readUTF() + " " + input.readDouble());
System.out.println(input.readUTF() + " " + input.readDouble());
System.out.println(input.readUTF() + " " + input.readDouble());

}
}

}

CSE 8B, Spring 2023 20

You must read the data
in the same order and
same format in which

they are stored

End of file (EOF)

• If you keep reading data at the end of an InputStream, then an EOFException
will occur
public class DetectEndOfFile {
public static void main(String[] args) {
try {
try (DataInputStream input =
new DataInputStream(new FileInputStream("test.dat"))) {
while (true)
System.out.println(input.readDouble());

}
}
catch (EOFException ex) {
System.out.println("All data were read");

}
catch (IOException ex) {
ex.printStackTrace();

}
}

}

CSE 8B, Spring 2023 21

Use input.available() to
check for EOF (if
input.available() == 0,
then it is EOF)

Binary filter I/O classes

• Use BufferedInputStream and BufferedOutputStream to
speed up input and output by reading ahead and writing later

• All the methods in BufferedInputStream and
BufferedOutputStream are inherited from their superclasses

CSE 8B, Spring 2023 22

The BufferedInputStream and
BufferedOutputStream classes

// Create a BufferedInputStream
public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int bufferSize)

// Create a BufferedOutputStream
public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int bufferSize)

CSE 8B, Spring 2023 23

The default buffer
size is 512 bytes

Example
public class Copy {

public static void main(String[] args) throws IOException {
// Check command-line parameter usage
if (args.length != 2) {

System.out.println(
"Usage: java Copy sourceFile targetfile");

System.exit(1);
}

// Check if source file exists
File sourceFile = new File(args[0]);
if (!sourceFile.exists()) {

System.out.println("Source file " + args[0] + " does not exist");
System.exit(2);

}

// Check if target file exists
File targetFile = new File(args[1]);
if (targetFile.exists()) {

System.out.println("Target file " + args[1] + " already exists");
System.exit(3);

}
...

CSE 8B, Spring 2023 24

Example
...
try (

// Create an input stream
BufferedInputStream input =

new BufferedInputStream(new FileInputStream(sourceFile));

// Create an output stream
BufferedOutputStream output =

new BufferedOutputStream(new FileOutputStream(targetFile));
) {

// Continuously read a byte from input and write it to output
int r;
int numberOfBytesCopied = 0;
while ((r = input.read()) != -1) {

output.write((byte)r);
numberOfBytesCopied++;

}

// Display the file size
System.out.println(numberOfBytesCopied + " bytes copied");

}
}

}

CSE 8B, Spring 2023 25

Check for end of file

Other binary file I/O

• Objects

– ObjectInputStream and
ObjectOutputStream can be used to read and
write serializable objects

• Random access

– RandomAccessFile allows data to be read from
and written to any location (not necessarily
sequentially) in the file

CSE 8B, Spring 2023 26

CSE 8B topics

• Introduction to Java
• Numbers and

mathematics
• Characters and strings
• Selections
• Methods
• Loops
• Recursion (simple)
• Arrays

• Objects and classes
– Object-oriented thinking

• Inheritance
• Polymorphism
• Abstract classes
• Interfaces
• Introduction to generics
• Exceptions
• Text file input/output
• Binary file input/output
• Assertions

CSE 8B, Spring 2023 27

Procedural programming

Object-oriented programming

Introduction to Java

• Java is:
– a high-level programming language

• Computer-specific details are abstracted

– an object-oriented programming language
• Based on classes

– a strongly typed language
• Programmers must explicitly identify the type of every

variable, method, and object

– a general-purpose programming language
• Not specialized to a particular application domain

– platform independent
• Write a program once and run it on any computer

CSE 8B, Spring 2023 28

Numbers and mathematics

• Numerical data types (e.g., an integer)

• Numeric operations (e.g., addition)

• Mathematical functions (e.g., cosine)

• Reading numbers from the console

CSE 8B, Spring 2023 29

Characters and strings

• Character data type (i.e., char)

• Comparing and testing characters

• String data type (i.e., String)

• Simple string methods (e.g., number of
characters in a string)

• Reading a character and string from the
console

CSE 8B, Spring 2023 30

Selections

• Relational operators (e.g., less than, equal to)

• Logical operators (e.g., not, and, or)

• if statements

• if-else statements

• switch statements

CSE 8B, Spring 2023 31

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Methods

• A method is a collection of statements that
are grouped together to perform an operation

• Write a method once and reuse it anywhere

CSE 8B, Spring 2023 32

Loops and recursion

• while loops

• do-while loops

• for loops

• Recursion is a technique that leads to elegant
solutions to problems that are difficult to
program using simple loops

– A recursive method is one that invokes itself
directly or indirectly

CSE 8B, Spring 2023 33

Arrays

• Array is a data structure that represents a
collection of the same types of data

CSE 8B, Spring 2023 34

2-dimensional array1-dimensional array

Procedural programming vs
object-oriented programming

• Procedural programming

– Data and operations on data are separate

– Requires passing data to methods

• Object-oriented programming

– Data and operations on data are in an object

– Organizes programs like the real world

• All objects are associated with both attributes and activities

– Using objects improves software reusability and
makes programs easier to both develop and maintain

CSE 8B, Spring 2023 35

Objects and classes

• An object represents an entity in the real
world that can be distinctly identified

– For example, a student, a desk, a circle, a button,
and even a loan can all be viewed as objects

– An object has a unique identity, state, and
behaviors

• Classes are constructs that define objects of
the same type

CSE 8B, Spring 2023 36

Object-oriented thinking

• Classes provide more flexibility and modularity
for building reusable software

• Class abstraction and encapsulation
– Separate class implementation from the use of the

class
– The creator of the class provides a description of the

class and let the user know how the class can be used
– The user of the class does not need to know how the

class is implemented
– The detail of implementation is encapsulated and

hidden from the user

CSE 8B, Spring 2023 37

Inheritance

• Inheritance enables you to define a general class (i.e., a
superclass) and later extend it to more specialized
classes (i.e., subclasses)

• A subclass inherits from a superclass
– For example, both a circle and a rectangle are geometric

objects
• GeometricObject is a superclass
• Circle is a subclass of GeometricObject
• Rectangle is a subclass of GeometricObject

• Models is-a relationships
– For example

• Circle is-a GeometricObject
• Rectangle is-a GeometricObject

CSE 8B, Spring 2023 38

Polymorphism

• A class defines a type

• A type defined by a subclass is called a subtype,
and a type defined by its superclass is called a
supertype
– For example

• Circle is a subtype of GeometricObject, and
GeometricObject is a supertype for Circle

• Polymorphism means that a variable of a
supertype can refer to a subtype object
– Greek word meaning “many forms”

CSE 8B, Spring 2023 39

Abstract classes

• Inheritance enables you to define a general class (i.e., a
superclass) and later extend it to more specialized classes
(i.e., subclasses)

• Sometimes, a superclass is so general it cannot be used to
create objects
– Such a class is called an abstract class

• An abstract class cannot be used to create objects
• An abstract class can contain abstract methods that are

implemented in concrete subclasses
• Just like nonabstract classes, models is-a relationships

– For example
• Circle is-a GeometricObject
• Rectangle is-a GeometricObject

CSE 8B, Spring 2023 40

Methods and data fields visibility

Modifiers on
Members
in a Class

Accessed
from the

Same Class

Accessed
from the

Same Package

Accessed
from a Subclass in a

Different Package

Accessed
from a

Different Package

Public ✓ ✓ ✓ ✓

Protected ✓ ✓ ✓

Default (no modifier) ✓ ✓

Private ✓

CSE 8B, Spring 2023 41

Interfaces

• An interface is a class-like construct that contains
only constants and abstract methods
– In many ways, an interface is similar to an abstract

class, but the intent of an interface is to specify
common behavior for objects
• For example, you can specify that the objects are

comparable and/or cloneable using appropriate interfaces

• Interfaces model is-kind-of relationships
– For example

• Fruit is-kind-of Edible

• Fish is-kind-of Edible

CSE 8B, Spring 2023 42

Unified Modeling Language (UML)

+ public
protected
- private
• Static variables and methods are underlined
• Abstract class names and methods are italicized
• Interface names and methods are italicized
• Open or no arrow is association
• Hollow diamond is aggregation
• Filled diamond is composition
• Hollow triangle is inheritance
• Dashed line with hollow triangle is

implementation of interface

CSE 8B, Spring 2023 43

Additional topics

• Introduction to generics

• Exceptions

• Text file input/output (I/O)

• Binary file input/output (I/O)

• Assertions

CSE 8B, Spring 2023 44

Introduction to generics

• Generics let you parameterize types

– You can define a method or class with generic
types, which are replaced with concrete types

CSE 8B, Spring 2023 45

Exceptions

• Exceptions are errors caused by your program and
external circumstances
– These errors can be caught and handled by your program

• Exception handling separates error-handling code from
normal programming tasks
– Makes programs easier to read and to modify

• The try block contains the code that is executed in
normal circumstances

• The catch block contains the code that is executed in
exceptional circumstances

• A method should throw an exception if the error needs
to be handled by its caller

CSE 8B, Spring 2023 46

Text file input/output (I/O)

• In order to perform I/O, you need to create
objects using appropriate Java I/O classes

– The objects contain the methods for
reading/writing data from/to a file

File

Scanner

PrintWriter

CSE 8B, Spring 2023 47

Binary file input/output (I/O)

• Binary I/O does not involve encoding or
decoding and thus is more efficient than text
I/O

CSE 8B, Spring 2023 48

Assertions

• An assertion is a Java statement that enables
you to assert an assumption about your
program

• An assertion contains a Boolean expression
that should be true during program execution

• Assertions can be used to assure program
correctness and avoid logic errors

CSE 8B, Spring 2023 49

CSE 8B topics

• Introduction to Java
• Numbers and

mathematics
• Characters and strings
• Selections
• Methods
• Loops
• Recursion (simple)
• Arrays

• Objects and classes
– Object-oriented thinking

• Inheritance
• Polymorphism
• Abstract classes
• Interfaces
• Introduction to generics
• Exceptions
• Text file input/output
• Binary file input/output
• Assertions

CSE 8B, Spring 2023 50

Procedural programming

Object-oriented programming

