Assertions

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B
Lecture 17/



Announcements

* Assignment 8 is due Jun 7, 11:59 PM
— Upgrade beginning Jun 10, 12:01 AM

* Educational research study
— Post-test today, last 20 minutes of lecture meeting
— Jun 9, weekly survey



Exceptions

* Exceptions are runtime errors caused by your
program and external circumstances

— These errors can be caught and handled by your
program



Exception handling

Exception handling separates error-handling code from
normal programming tasks

— Makes programs easier to read and to modify

The try block contains the code that is executed in normal
circumstances

The catch block contains the code that is executed in
exceptional circumstances

A method should throw an exception if the error needs to
be handled by its caller

Warning: exception handling usually requires more time
and resources because it requires instantiating a new
exception object, rolling back the call stack, and
propagating the errors to the calling methods



Assertions

Programming with Assertions

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html
An assertion is a Java statement that enables
you to assert an assumption about your
program
An assertion contains a Boolean expression
that should be true during program execution

Assertions can be used to assure program
correctness and avoid logic errors



https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Declaring assertions

* An assertion is declared using the Java
keyword assert

assert assertion;
or
assert assertion : detailMessage;

where assertion is a Boolean expression
and detailMessage is a primitive-type or an
Object value



Executing assertions

* When an assertion statement is executed, Java
evaluates the assertion

e Ifitisfalse, an AssertionError will be
thrown

* The AssertionError class has a no-arg
constructor and seven overloaded single-
argument constructors of type int, long,
f1loat, double, boolean, char, and
Object



Executing assertions

* For the first assert statement with no detail
message, the no-arg constructor of
AssertionError is used

* For the second assert statement with a detail
message, an appropriate AssertionError
constructor is used to match the data type of the
message

 Since AssertionError is a subclass of Error,
when an assertion becomes false, the program
displays a message on the console and exits



Executing assertions example

public class AssertionDemo {
public static void main(String[] args) {
int 1;
int sum = ©;
for (1 =0; i < 10; i++) {

sum += 1i;
assert 1 == 10;
assert sum > 10 & sum < 5 * 10 : "sum is " + sum;



Executing assertions example

* A best practice is to place assertions in a
switch statement without a default case

— Example
switch (month) {
case 1: ... ; break;
case 2: ... ; break;
case 12: ... ; break;
default: assert false : "Invalid month: " +
month;

¥



Running programs with assertions

By default, the assertions are disabled at runtime

To enable them, use the switch -enableassertions,
or -ea for short, as follows

java -ea AssertionDemo

Assertions can be selectively enabled or disabled at
class level or package level

The disable switch is ~-disableassertions or -da
for short

For example, the following command enables
assertions in package packagel and disables
assertions in class Classl

java -ea:packagel -da:Classl AssertionDemo



Using exception handling or assertions

Assertions should not be used to replace exception
handling

* Exception handling deals with unusual circumstances
during program execution

* Assertions are to assure the correctness of the program
e Exception handling addresses robustness
* Assertions address correctness

* Like exception handling, assertions are not used for
normal tests, but for internal consistency and validity
checks

e Assertions are checked at runtime and can be turned on
or off at startup time



Using exception handling or assertions

* Do not use assertions for argument checking in
public methods

e Valid arguments that may be passed to a public
method are part of the method’s contract

* The contract must always be obeyed whether
assertions are enabled or disabled

— For example, the following code in the Circle class

should be rewritten using exception handling
public void setRadius(double newRadius) {
assert newRadius >= 0;
radius = newRadius;

¥



Programming with assertions

Use assertions to reaffirm assumptions

This gives you more confidence to assure
correctness of the program

A common use of assertions is to replace
assumptions with assertions in the code

A best practice is to use assertions liberally

Assertions are checked at runtime and can be
turned on or off at startup time, unlike
exception handling



Next Lecture

* Binary file input/output



