
Interfaces

Introduction to Programming and 
Computational Problem Solving - 2

CSE 8B

Lecture 16



Announcements

• Assignment 7 is due tomorrow, 11:59 PM

– Upgrade beginning Jun 4, 12:01 AM

• Assignment 8 will be released today

– Due Jun 7, 11:59 PM

• Educational research study

– Jun 2, weekly survey

– Jun 5, post-test

CSE 8B, Spring 2023 2



Abstract classes and interfaces

• Remember, a superclass defines common 
behavior for related subclasses

• An interface can be used to define common 
behavior for classes, including unrelated
classes

• Interfaces and abstract classes (covered last 
lecture) are closely related to each other 

CSE 8B, Spring 2023 3



Abstract classes

• Remember, inheritance enables you to define a general 
class (i.e., a superclass) and later extend it to more 
specialized classes (i.e., subclasses)

• Sometimes, a superclass is so general it cannot be used 
to create objects
– Such a class is called an abstract class

• An abstract class can contain abstract methods that are 
implemented in concrete subclasses

• Just like nonabstract classes, models is-a relationships
– For example

• Circle is-a GeometricObject
• Rectangle is-a GeometricObject

CSE 8B, Spring 2023 4



Abstract class as a data type

• Remember, an abstract class cannot be 
instantiated using the new operator

• However, an abstract class can be used as a 
data type

– Example
GeometricObject[] objects = new GeometricObject[2];
objects[0] = new Circle();
objects[1] = new Rectangle();

CSE 8B, Spring 2023 5



Abstract classes and interfaces

• An abstract class can contain abstract methods 
that are implemented in concrete subclasses

• An interface is a class-like construct that contains 
constants and abstract methods

– In many ways, an interface is similar to an abstract 
class, but the intent of an interface is to specify 
common behavior for objects

• For example, you can specify that the objects are 
comparable and/or cloneable using appropriate interfaces

CSE 8B, Spring 2023 6



Defining an interface

• To distinguish an interface from a class, Java uses 
the keyword interface
– The syntax to define an interface is

public interface InterfaceName { 
// Constant declarations
// Abstract method signatures

}

– Example
public interface Edible {

// Describe how to eat
public abstract String howToEat();

}

CSE 8B, Spring 2023 7



Interfaces

• An interface is treated like a special class in Java
• Each interface is compiled into a separate bytecode 

file, just like a regular class
• Like an abstract class, you cannot create an instance 

from an interface using the new operator
• Naming convention

– Class names are nouns
– Interface names may be adjectives or nouns

• Interfaces model is-kind-of relationships
– For example

• Fruit is-kind-of Edible

CSE 8B, Spring 2023 8



Interface example

• Use the Edible interface to specify whether 
an object is edible

CSE 8B, Spring 2023 9



Interfaces

• The class for the object implementing an 
interface uses the keyword implements
– Examples

abstract class Fruit implements Edible {

// Data fields, constructors, and methods

}

class Chicken extends Animal implements Edible {

// Data fields, constructors, and methods

}

• The relationship between the class and the 
interface is known as interface inheritance

CSE 8B, Spring 2023 10



Omitting modifiers in interfaces

• All data fields are public final static
and all methods are public abstract in an 
interface

– As such, these modifiers can be omitted

CSE 8B, Spring 2023 11

 public interface T1 { 
  public static final int K = 1; 

   

  public abstract void p(); 

} 

     

Equivalent 

public interface T1 { 

  int K = 1; 

   

  void p(); 

} 



Interface static members

• Interfaces can have static members

• Like class static members, the best practice is 
to make invocations of static methods and 
access of static data fields obvious

• Use
InterfaceName.methodName(arguments)

InterfaceName.variable

CSE 8B, Spring 2023 12



Interface default methods

• A default method provides a default implementation 
for the method in the interface
– Use the keyword default
– Example

public interface A {
public default void doSomething() {
System.out.println("Do something");

}
...

}

• A class that implements the interface may simply use 
the default implementation for the method or override 
the method with a new implementation

CSE 8B, Spring 2023 13



Interface example

• The java.lang.Comparable interface defines 
the compareTo method for comparing objects
package java.lang;

public interface Comparable<E> {
public int compareTo(E o);

}

• The compareTo method returns
– A negative integer if this object is less than o

– Zero if this object is equal to o

– A positive integer if this object is greater than o

CSE 8B, Spring 2023 14



The Comparable interface

• Many classes (e.g., the numeric wrapper 
classes) in the Java library implement 
Comparable to define a natural order for 
objects

– The compareTo method is implemented in these 
classes

CSE 8B, Spring 2023 15



The Comparable interface

CSE 8B, Spring 2023 16

 public class Integer extends Number 

    implements Comparable<Integer> { 

  // class body omitted 

  

  @Override 

  public int compareTo(Integer o) { 

    // Implementation omitted 

  } 

} 

 

public class BigInteger extends Number 

    implements Comparable<BigInteger> { 

  // class body omitted 

 

  @Override 

  public int compareTo(BigInteger o) { 

    // Implementation omitted 

  } 

} 

  public class String extends Object 

    implements Comparable<String> { 

  // class body omitted 

  

  @Override 

  public int compareTo(String o) { 

    // Implementation omitted 

  } 

} 

 

public class Date extends Object 

    implements Comparable<Date> { 

  // class body omitted 

 

  @Override 

  public int compareTo(Date o) { 

    // Implementation omitted 

  } 

} 

 



Defining classes to implement Comparable

public class ComparableRectangle extends Rectangle 
implements Comparable<ComparableRectangle> {

// Construct a ComparableRectangle with specified properties
public ComparableRectangle(double width, double height) {
super(width, height);

}

@Override // Implement the compareTo method defined in Comparable 
public int compareTo(ComparableRectangle o) {
if (getArea() > o.getArea())

return 1;
else if (getArea() < o.getArea())

return -1;
else

return 0;
}
... CSE 8B, Spring 2023 17



Interface example

• The java.lang.Cloneable interface specifies that 
an object can be cloned (i.e., it can be copied)
package java.lang;

public interface Cloneable {
}

• The interface is empty
– An interface with an empty body is called a marker 

interface
• A class that implements the Cloneable interface is 

marked cloneable
– Its objects can be cloned using the clone method defined 

in the Object class

CSE 8B, Spring 2023 18



The Cloneable interface

• Like Comparable, many classes in the Java 
library implement Cloneable
– The instances of these classes can be cloned

– Examples
Calendar calendar = new GregorianCalendar(2003, 2, 1);
Calendar calendarCopy = (Calendar)calendar.clone();
System.out.println("calendar == calendarCopy is " +
(calendar == calendarCopy));

System.out.println("calendar.equals(calendarCopy) is " +
calendar.equals(calendarCopy));

displays
calendar == calendarCopy is false
calendar.equals(calendarCopy) is true

CSE 8B, Spring 2023 19

Explicit 
casting



The Cloneable interface

• Arrays are cloneable

– You can clone an array using the clone method

int[] list1 = {1, 2};

int[] list2 = list1.clone();

– ArrayList implements Cloneable

CSE 8B, Spring 2023 20



Defining classes to implement Cloneable

• A class that implements the Cloneable interface 
must override the clone method defined in the 
Object class
protected native Object clone() throws CloneNotSupportedException;

• The keyword native indicates this method is not 
written in Java
– It is implemented in the JVM for the native platform

• The class must override the clone method and change 
the visibility modifier to public, so it can be used in 
any package

• The class must implement Cloneable
– Otherwise, CloneNotSupportedException is thrown

CSE 8B, Spring 2023 21



Defining classes to implement Cloneable

• To perform a shallow copy, the clone method in a class that implements the 
Cloneable interface can simply invoke the super.clone method
public abstract class GeometricObject

implements Cloneable
{

private String color;
private boolean filled;
private java.util.Date dateCreated;
...
@Override
public Object clone() throws CloneNotSupportedException {

GeometricObject go = (GeometricObject)super.clone(); // Shallow copy
return go;

}
}

CSE 8B, Spring 2023 22

Shallow copy: for data fields 
that are objects, the objects’ 

references are copied



Defining classes to implement Cloneable

• To perform a deep copy, the clone method in a class that implements the 
Cloneable interface must copy the contents of data fields that are objects
public abstract class GeometricObject

implements Cloneable
{

private String color;
private boolean filled;
private java.util.Date dateCreated;
...
@Override
public Object clone() throws CloneNotSupportedException {

GeometricObject go = (GeometricObject)super.clone(); // Shallow copy
// String is immutable, so deep copy is not required
go.dateCreated = (java.util.Date)dateCreated.clone();
return go;

}
}

CSE 8B, Spring 2023 23

Deep copy

Shallow copy: for data fields 
that are objects, the objects’ 

references are copied



Interfaces vs. abstract classes

• In an interface, the data must be constants; an 
abstract class can have all types of data

• Each method in an interface has only a 
signature without implementation (except 
default and static methods); an abstract class 
can have concrete methods

CSE 8B, Spring 2023 24

May contain public abstract 
instance methods, public 
default, and public static 
methods.



Interfaces vs. abstract classes

• An interface can inherit other interfaces using the 
extends keyword.  Such an interface is called a 
subinterface.
public interface NewInterface
extends Interface1, ..., InterfaceN {
// constants and abstract methods

}

• A class implementing NewInterface must implement 
the abstract methods defined in NewInterface, 
Interface1, ..., and InterfaceN.

• An interface can extend other interfaces, but not 
classes

CSE 8B, Spring 2023 25



Interfaces vs. abstract classes

• All classes share a single root, the Object class, 
but there is no single root for interfaces

• Like a class, an interface also defines a type
– A variable of an interface type can reference any 

instance of the class that implements the interface

• If interface 2 extends interface 1, then interface 1 
is like a superclass for interface 2

• You can use an interface as a data type and cast a 
variable of an interface type to its subclass, and 
vice versa

CSE 8B, Spring 2023 26



Interfaces vs. abstract classes

• A class can implement multiple interfaces, but it can 
only extend one superclass

• Suppose that c is an instance of Class2
– c is also an instance of Object, Class1, Interface1, 
Interface1_1, Interface1_2, Interface2_1, and 
Interface2_2

CSE 8B, Spring 2023 27



Conflicting interfaces

• On rare occasion, a class may implement two 
interfaces with conflicting information (e.g., 
two same constants with different values or 
two methods with same signature but 
different return type)

• This type of errors will be detected by the 
compiler

CSE 8B, Spring 2023 28



Class design guidelines



Coherence

• A class should describe a single entity, and all 
the class operations should logically fit 
together to support a coherent purpose

• A single entity with many responsibilities can 
be broken into several classes to separate 
responsibilities

CSE 8B, Spring 2023 30



Consistency

• Follow standard Java programming style and 
naming conventions

• Choose informative names for classes, data fields, 
and methods

– Make names consistent

• Place the data declaration before the constructor, 
and place constructors before methods

• Provide a no-arg constructor (or document why 
the class does not support one)

CSE 8B, Spring 2023 31



Encapsulation

• A class should use the private modifier to hide 
its data from direct access by clients

• Provide getter methods and setter methods to 
provide users with access to the private data, but 
only to private data you want the user to see or 
to modify

• A class should also hide methods not intended for 
client use

• Make methods protected if they are intended 
for extenders of the class

CSE 8B, Spring 2023 32



Clarity and completeness

• A class should have a clear contract that is easy to explain and 
easy to understand

• Design a class that imposes no restrictions on how or when 
the user can use it
– Design the properties in a way that lets the user set them in any order and 

with any combination of values
– Design methods that function independently of their order of occurrence

• Methods should be defined intuitively without causing 
confusion

• You should not declare a data field that can be derived from 
other data fields

• A class should provide a variety of ways for customization 
through properties and methods that, together, are minimal 
and complete

CSE 8B, Spring 2023 33



Instance vs. static

• A variable or method dependent on a specific instance 
of the class must be an instance variable or method

• A variable shared by all the instances of a class should 
be declared static

• A method not dependent on a specific instance should 
be defined as a static method

• Always reference static variables and methods from a 
class name to improve readability and avoid errors

• Do not initialize a static data field from a constructor 
parameter
– Use a setter method to change the static data field

CSE 8B, Spring 2023 34



Inheritance vs. aggregation

• Use inheritance to model is-a relationships

• Use aggregation (and composition) to model 
has-a relationships

CSE 8B, Spring 2023 35



Interfaces vs. abstract classes

• Abstract classes and interfaces can both be used to model common 
behavior for objects
– Interfaces cannot contain data fields, only constants

• In general, a strong is-a relationship clearly describes a parent-child 
relationship should be modeled using classes

• An is-kind-of relationship indicates an object possesses a certain 
property and can be modeled using interfaces
– An interface can define a common supertype for unrelated classes

• A subclass can extend only one superclass, but can implement any 
number of interfaces

• You can also use interfaces to circumvent single inheritance 
restriction if multiple inheritance is desired
– You must design one as a superclass, and others as interface

CSE 8B, Spring 2023 36



Unified Modeling Language (UML)

+ public
# protected
- private
• Static variables and methods are underlined
• Abstract class names and methods are italicized
• Interface names and methods are italicized
• Open or no arrow is association
• Hollow diamond is aggregation
• Filled diamond is composition
• Hollow triangle is inheritance
• Dashed line with hollow triangle is 

implementation of interface

CSE 8B, Spring 2023 37



Next Lecture

• Assertions and career day

– Participation is optional

– No prelecture quiz or lecture worksheet

– Not on final exam

• Educational research study

– Post-test

CSE 8B, Spring 2023 38


