Interfaces

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B
Lecture 16

Announcements

* Assignment 7 is due tomorrow, 11:59 PM
— Upgrade beginning Jun 4, 12:01 AM

* Assignment 8 will be released today
— Due Jun 7, 11:59 PM

* Educational research study
— Jun 2, weekly survey
— Jun 5, post-test

Abstract classes and interfaces

* Remember, a superclass defines common
behavior for related subclasses

* An interface can be used to define common
behavior for classes, including unrelated
classes

* |nterfaces and abstract classes (covered last
lecture) are closely related to each other

Abstract classes

Remember, inheritance enables you to define a general
class (i.e., a superclass) and later extend it to more
specialized classes (i.e., subclasses)

Sometimes, a superclass is so general it cannot be used
to create objects
— Such a class is called an abstract class

An abstract class can contain abstract methods that are
implemented in concrete subclasses

Just like nonabstract classes, models is-a relationships

— For example
e Circle is-a GeometricObject
» Rectangle is-a GeometricObject

Abstract class as a data type

e Remember, an abstract class cannot be
instantiated using the new operator

e However, an abstract class can be used as a
data type

— Example
GeometricObject[] objects = new GeometricObject[2];
objects[0] new Circle();
objects[1] new Rectangle();

Abstract classes and interfaces

e An abstract class can contain abstract methods
that are implemented in concrete subclasses

e An interface is a class-like construct that contains
constants and abstract methods

— In many ways, an interface is similar to an abstract
class, but the intent of an interface is to specify
common behavior for objects

* For example, you can specify that the objects are
comparable and/or cloneable using appropriate interfaces

Defining an interface

e To distinguish an interface from a class, Java uses
the keyword interface

— The syntax to define an interface is
public interface InterfaceName {
// Constant declarations
// Abstract method signatures

¥

— Example
public interface Edible {
// Describe how to eat
public abstract String howToEat();

¥

Interfaces

An interface is treated like a special class in Java

Each interface is compiled into a separate bytecode
file, just like a regular class

Like an abstract class, you cannot create an instance
from an interface using the new operator

Naming convention
— Class names are nouns
— Interface names may be adjectives or nouns

Interfaces model is-kind-of relationships

— For example
* Fruit is-kind-of Edible

Interface example

 Use the Edible interface to specify whether
an object is edible

Notation: «interface» :
The interface name and the . Animal
J L Edible
method names are italicized.
T,f.'(’ dashed lines and hqﬁow +howToEat(): String +sound(): String
triangles are used to point to
the interface. paN Z\ Z\

Fruit | Chickenl Tiger |

Orange | Apple |

CSE 8B, Spring 2023

Interfaces

* The class for the object implementing an
interface uses the keyword implements

— Examples

abstract class Fruit implements Edible {
// Data fields, constructors, and methods

¥

class Chicken extends Animal implements Edible {
// Data fields, constructors, and methods

}
* The relationship between the class and the
interface is known as interface inheritance

Omitting modifiers in interfaces

* All data fields are public final static
and all methods are public abstractinan
interface

— As such, these modifiers can be omitted

public interface T1 { public interface T1 {
public static final int K = 1; Equivalent int K = 1;

public abstract void p(); void p();
} }

Interface static members

* |Interfaces can have static members

* Like class static members, the best practice is
to make invocations of static methods and
access of static data fields obvious

* Use
InterfaceName.methodName (arguments)
InterfaceName.variable

Interface default methods

* A default method provides a default implementation
for the method in the interface

— Use the keyword default

— Example

public interface A {
public default void doSomething() {
System.out.println("Do something");

¥

}
e A class that implements the interface may simply use
the default implementation for the method or override
the method with a new implementation

Interface example

* The java.lang.Comparable interface defines

the compareTo method for comparing objects
package java.lang;

public interface Comparable<E> {
public int compareTo(E o0);

}
* The compareTo method returns
— A negative integer if this object is less than o
— Zero if this object is equal to o
— A positive integer if this object is greater than o

The Comparable interface

 Many classes (e.g., the numeric wrapper
classes) in the Java library implement
Comparable to define a natural order for
objects

— The compareTo method is implemented in these
classes

The Comparable interface

public class Integer extends Number
implements Comparable<Integer> {

@Override
public int compareTo (Integer o) {

}

public class BigInteger extends Number
implements Comparable<BigInteger> {

@Override
public int compareTo (BigInteger o) {

}

public class String extends Object
implements Comparable<String> {

@Override
public int compareTo (String o) {

}

public class Date extends Object
implements Comparable<Date> {

@Override
public int compareTo (Date o) {

}

Defining classes to implement Comparable

GeometricObject | «interface»
A Jjava.lang. Comparable<ComparableRectangle>

+compareTo(o: ComparableRectangle): int
Rectangle | Pa

AT;

ComparableRectangle | ------------------------------------ |

public class ComparableRectangle extends Rectangle
implements Comparable<ComparableRectangle> {
// Construct a ComparableRectangle with specified properties
public ComparableRectangle(double width, double height) {
super(width, height);
}

@Override // Implement the compareTo method defined in Comparable
public int compareTo(ComparableRectangle o) {
if (getArea() > o.getArea())
return 1;
else if (getArea() < o.getArea())
return -1;
else
return 0;

CSE 8B, Spring 2023 17

Interface example

* The java.lang.Cloneable interface specifies that

an object can be cloned (i.e., it can be copied)
package java.lang;

public interface Cloneable {

}

 The interface is empty

— An interface with an empty body is called a marker
interface

e Aclass that implements the Cloneable interface is
marked cloneable

— Its objects can be cloned using the clone method defined
in the Object class

The Cloneable interface

* Like Comparable, many classes in the Java
library implement Cloneable

— The instances of these classes can be cloned gypjicit

— Examples casting

Calendar calendar = new GregorianCalendar(2003, 2, 1);
Calendar calendarCopy = (Calendar)calendar.clone();
System.out.println("calendar == calendarCopy is " +
(calendar == calendarCopy));
System.out.println("calendar.equals(calendarCopy) is " +

calendar.equals(calendarCopy));

displays
calendar == calendarCopy is false
calendar.equals(calendarCopy) is true

The Cloneable interface

* Arrays are cloneable

— You can clone an array using the clone method
int[] listl = {1, 2};
int[] 1list2 = listl.clone();

— ArraylList implements Cloneable

Defining classes to implement Cloneable

e Aclass that implements the Cloneable interface
must override the clone method defined in the
Object class

protected native Object clone() throws CloneNotSupportedException;

 The keyword native indicates this method is not
written in Java

— Itis implemented in the JVM for the native platform

* The class must override the clone method and change
the visibility modifier to public, so it can be used in
any package

* The class must implement Cloneable
— Otherwise, CloneNotSupportedException is thrown

Defining classes to implement Cloneable

To perform a shallow copy, the clone method in a class that implements the

Cloneable interface can simply invoke the super.clone method

public abstract class GeometricObject Shallow copy: for data fields
implements Cloneable

{ that are objects, the objects’

private String color; references are copied
private boolean filled;
private java.util.Date dateCreated;

@Override
public Object clone() throws CloneNotSupportedException {
GeometricObject go = (GeometricObject)super.clone(); // Shallow copy
return go;
}
}

CSE 8B, Spring 2023 22

Defining classes to implement Cloneable

To perform a deep copy, the clone method in a class that implements the

Cloneable interface must copy the contents of data fields that are objects

public abstract class GeometricObject Shallow copy: for data fields
implements Cloneable

{ that are objects, the objects’
private String color; references are copied
private boolean filled;
private java.util.Date dateCreated;

@Override

public Object clone() throws CloneNotSupportedException {
GeometricObject go = (GeometricObject)super.clone(); // Shallow copy
// String is immutable, so deep copy is not required
go.dateCreated = (java.util.Date)dateCreated.clone();
return go;

Deep copy

}
}

CSE 8B, Spring 2023 23

Interfaces vs. abstract classes

* In an interface, the data must be constants; an
abstract class can have all types of data

 Each method in an interface has only a
signature without implementation (except
default and static methods); an abstract class
can have concrete methods

Variables Constructors Methods

Abstract class No restrictions. Constructors are invoked by subclasses through No restrictions.
constructor chaining. An abstract class cannot be
instantiated using the new operator.

Interface All variables must be No constructors. An interface cannot be instantiated May contain public abstract
public static final. using the new operator. instance methods, public
default, and public static

methods.

CSE 8B, Spring 2023 24

Interfaces vs. abstract classes

* An interface can inherit other interfaces using the
extends keyword. Such an interface is called a
subinterface.

public interface NewlInterface
extends Interfacel, ..., InterfaceN {
// constants and abstract methods

¥

* Aclass implementing NewInterface must implement
the abstract methods defined in NewInterface,
Interfacel, ..., and InterfaceN.

* An interface can extend other interfaces, but not
classes

Interfaces vs. abstract classes

All classes share a single root, the Object class,
but there is no single root for interfaces

Like a class, an interface also defines a type

— A variable of an interface type can reference any
instance of the class that implements the interface

If interface 2 extends interface 1, then interface 1
is like a superclass for interface 2

You can use an interface as a data type and cast a
variable of an interface type to its subclass, and
vice versa

Interfaces vs. abstract classes

* A class can implement multiple interfaces, but it can
only extend one superclass

e Suppose that c is an instance of Class?2

— cisalso aninstance of Object, Classl, Interfacel,
Interfacel 1, Interfacel 2, Interface2 1, and
Interface2 2

Interfacel_2 |4'"": Interface2 2 |4------------------=
; ;

Interfacel_1 |4-----=- ------ Interfacel |q- ------------------ Interface2_1 |4-----------------i

-

Object |4 Classl |4 Class2

CSE 8B, Spring 2023

27

Conflicting interfaces

* On rare occasion, a class may implement two
interfaces with conflicting information (e.g.,
two same constants with different values or
two methods with same signature but
different return type)

* This type of errors will be detected by the
compiler

Class design guidelines

Coherence

* A class should describe a single entity, and all
the class operations should logically fit
together to support a coherent purpose

* Asingle entity with many responsibilities can
be broken into several classes to separate
responsibilities

Consistency

Follow standard Java programming style and
naming conventions

Choose informative names for classes, data fields,
and methods
— Make names consistent

Place the data declaration before the constructor,
and place constructors before methods

Provide a no-arg constructor (or document why
the class does not support one)

Encapsulation

A class should use the private modifier to hide
its data from direct access by clients

Provide getter methods and setter methods to
provide users with access to the private data, but
only to private data you want the user to see or
to modify

A class should also hide methods not intended for
client use

Make methods protected if they are intended
for extenders of the class

Clarity and completeness

A class should have a clear contract that is easy to explain and
easy to understand

Design a class that imposes no restrictions on how or when
the user can use it

— Design the properties in a way that lets the user set them in any order and
with any combination of values

— Design methods that function independently of their order of occurrence

Methods should be defined intuitively without causing
confusion

You should not declare a data field that can be derived from
other data fields

A class should provide a variety of ways for customization
through properties and methods that, together, are minimal
and complete

Instance vs. static

A variable or method dependent on a specific instance
of the class must be an instance variable or method

A variable shared by all the instances of a class should
be declared static

A method not dependent on a specific instance should
be defined as a static method

Always reference static variables and methods from a
class name to improve readability and avoid errors

Do not initialize a static data field from a constructor
parameter

— Use a setter method to change the static data field

Inheritance vs. aggregation

* Use inheritance to model is-a relationships

e Use aggregation (and composition) to model
has-a relationships

Interfaces vs. abstract classes

Abstract classes and interfaces can both be used to model common
behavior for objects

— Interfaces cannot contain data fields, only constants

In general, a strong is-a relationship clearly describes a parent-child
relationship should be modeled using classes

An is-kind-of relationship indicates an object possesses a certain
property and can be modeled using interfaces

— An interface can define a common supertype for unrelated classes

A subclass can extend only one superclass, but can implement any
number of interfaces

You can also use interfaces to circumvent single inheritance
restriction if multiple inheritance is desired

— You must design one as a superclass, and others as interface

Unified Modeling Language (UML)

+ public

protected
- private

e Static variables and methods are underlined

* Abstract class names and methods are italicized
* |nterface names and methods are italicized

* Open or no arrow is association
 Hollow diamond is aggregation
* Filled diamond is composition

* Hollow triangle is inheritance

* Dashed line with hollow triangleis _[>
implementation of interface

Next Lecture

* Assertions and career day
— Participation is optional
— No prelecture quiz or lecture worksheet
— Not on final exam
* Educational research study
— Post-test

