Abstract Classes

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B
Lecture 15



Announcements

* Assighment 6 is due today, 11:59 PM
— Upgrade beginning May 27, 12:01 AM

* Assignment 7 will be released today
— Due Jun 1, 11:59 PM

* Educational research study
— May 26, weekly survey



Abstract classes

Remember, a superclass defines common behavior for related
subclasses

— Inheritance enables you to define a general class (i.e., a
superclass) and later extend it to more specialized classes (i.e.,
subclasses)

Sometimes, a superclass is so general it cannot be used to create
objects

— Such a class is called an abstract class

An abstract class can contain abstract methods that are
implemented in concrete subclasses

Just like nonabstract classes, models is-a relationships

— For example
e Circle is-a GeometricObject
* Rectangle is-a GeometricObject



Abstract class example

GeometricObject

- Abstract class name is italicized

-color: String
-filled: boolean
-dateCreated: java.util.Date

The # sign indicates
protected modifier

Abstract methods ——
are italicized

#GeometricObject()

#GeometricObject(color: string,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFiTled(filled: boolean):
+getDateCreated(): java.util.Date
+toString(): String

+getArea(): double
+getPerimeter(): double

void

Methods getArea and getPerimeter are

T T

overridden in Circle and Rectangle.
Superclass methods are generally omitted

Circle

Rectangle

in the UML diagram for subclasses.

-radius: double

-width: double

+Circle()
+Circle(radius: double)

+Circle(radius: double, color: string,

filled: boolean)
+getRadius(): double

+setRadius(radius: double): void

+getDiameter(): double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,
color: string, filled: boolean)

+getWidth() : double
+setWidth(width: double): void
+getHeight(): double

+setHeight(height:

double): void




Unified Modeling Language (UML)

+ public

# protected

- private

e Static variables and methods are underlined

 Abstract class names and methods are italicized

* Open or no arrow is association

* Hollow diamond is aggregation

* Filled diamond is composition

v #OV

* Hollow triangle is inheritance




Methods and data fields visibility

Modifiers on Accessed Accessed Accessed Accessed
Members from the from the from a Subclass in a from a
in a Class Same Class | Same Package | Different Package Different Package

Public

Protected

Default (no modifier)

Private

CSE 8B, Spring 2023 6



abstract modifier

Abstract classes and abstract methods are denoted using the abstract modifier

— Example

public class GeometricObject { .
private String color = "white"; Constructors in an
private boolean filled;
private java.util.Date dateCreated; abstract class are
// Construct a default geometric object prOteCted because
protected| GeometricObject() { thev are onlv used

dateCreated = new java.util.Date(); y y

} by subclasses

// Construct a geometric object with color and filled value
GeometricObject(String color, boolean filled) {
dateCreated = new java.util.Date();
this.color = color;
this.filled = filled;

}

// Abstract method getArea
public [abstract] double getArea();

// Abstract method getPerimeter
public double getPerimeter();

CSE 8B, Spring 2023



Abstract methods are only allowed
in abstract classes

e An abstract method cannot be contained in a
nonabstract class

* |f a subclass of an abstract superclass does not
implement all the abstract methods, then the
subclass must be defined abstract

* In other words, in a nonabstract subclass
extended from an abstract class, all the
abstract methods must be implemented, even
if they are not used in the subclass



An object cannot be created
from an abstract class

* An abstract class cannot be instantiated using
the new operator

* You can still define its constructors, which are
invoked in the constructors of its subclasses
— For example, the constructors of

GeometricObject areinvoked in the Circle
class and the Rectangle class



An abstract class without
any abstract methods

* Remember, a class containing any abstract
methods must be abstract

* |tis also possible to define an abstract class
that does not contain any abstract methods

— This class is used as a base class for defining a new
subclass



Superclass of abstract class
may be concrete

e A subclass can be abstract even if its
superclass is concrete
— For example, the Object class is concrete, but its

subclasses (e.g., GeometricObject) may be
abstract



Concrete method overridden
to be abstract

A subclass can override a method from its
superclass to define it abstract

* This is rare, but useful when the
implementation of the method in the
superclass becomes invalid in the subclass

— In this case, the subclass must be defined abstract



Abstract class as a data type

e Remember, an abstract class cannot be
instantiated using the new operator

e However, an abstract class can be used as a
data type

— Example
GeometricObject[] objects = new GeometricObject[2];
objects[0] new Circle();
objects[1] new Rectangle();



Abstract class example

 Number is an abstract superclass for the
numeric wrapper classes (see lecture 11)

— https://docs.oracle.com/javase/8/docs/api/java/lang/Number.html

— https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Number.html

java.lang. Number byteValue() and
+byteValue(): byte shortValue() call
+shortValue(): short intValue() and cast
+intValue(D: 1int result to byte and
FUEEEL L EAC)S Ly short, respectively
+floatValue(D: float
+doubleValue(): double

PaN
Double | Float | Long | Integer | Short | Byte | Biginteger | BigDecima]l

CSE 8B, Spring 2023 14


https://docs.oracle.com/javase/8/docs/api/java/lang/Number.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Number.html

Abstract class example

https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Calendar.html

 java.util.Calendar is an abstract base class
for extracting detailed information such as year,
month, date, hour, minute, and second from a
Date object

— An instance of java.util.Date represents a
specific instant in time with millisecond precision
e Subclasses of Calendar can implement specific
calendar systems such as Gregorian calendar

— GregorianCalendar is a concrete subclass of the
abstract class Calendar

— Developers can extend Calendar to implement
others (e.g., Lunar Calendar, Jewish calendar)



https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Calendar.html

Example: GregorianCalendar is a concrete
subclass of the abstract class Calendar

java.util.Calendar

#Calendar()
+get(field: int): int
+set(field: int, value: int): void

+set(year: int, month: int,
dayOfMonth: int): void

+getActualMaximum(field: int): int
+add(field: int, amount: int): void
+getTime(): java.util.Date

+setTime(date: java.util.Date): void

Constructs a default calendar.
Returns the value of the given calendar field.
Sets the given calendar to the specified value.

Sets the calendar with the specified year. month, and date. The month
parameter is 0-based; that 1s, 0 is for January.

Returns the maximum value that the specified calendar field could have.
Adds or subtracts the specified amount of time to the given calendar field.

Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).

Sets this calendar’s time with the given Date object.

ﬁ:.

java.util. GregorianCalendar

+GregorianCalendar()
+GregorianCalendar(year: 1int,
month: int, dayOfMonth: int)

+GregorianCalendar(year: 1int,
month: 1int, dayOfMonth: 1int,
hour:int, minute: int, second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCalendar for the specified year, month, and
date.

Constructs a GregorianCalendar for the specified year, month, date,
hour, minute, and second. The month parameter is O-based, that
s, 0 1s for January.

CSE 8B, Spring 2023 16




The GregorianCalendar Class

https://docs.oracle.com/javase/8/docs/api/java/util/GregorianCalendar.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/GregorianCalendar.html

* Use new GregorianCalendar() to
construct a default GregorianCalendar
with the current time

* Use new GregorianCalendar(year,
month, date) to constructa
GregorianCalendar with the specified

yvear, month, and date

— The month parameter is 0-based (e.g., O is
January)



https://docs.oracle.com/javase/8/docs/api/java/util/GregorianCalendar.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/GregorianCalendar.html

Calendar is an abstract base class

« The get(int field) method defined in the Calendar class is useful to
extract the date and time information from a Calendar object

* The fields are defined as constants

Constant Description

YEAR The year of the calendar.

MONTH The month of the calendar, with O for January.

DATE The day of the calendar.

HOUR The hour of the calendar (12-hour notation).
HOUR_OF_DAY The hour of the calendar (24-hour notation).

MINUTE The minute of the calendar.

SECOND The second of the calendar.

DAY OF WEEK The day number within the week. with 1 for Sunday.
DAY_OF_MONTH Same as DATE.

DAY_OF_YEAR The day number in the year, with [ for the first day of the year.

WEEK_OF_MONTH
WEEK_OF_YEAR
AM_PM

The week number within the month, with 1 for the first week.
The week number within the year, with 1 for the first week.

Indicator for AM or PM (0 for AM and 1 for PM). 18



The abstract add method

e The add method is abstract in the Calendar

class because its implementation is dependent
on a concrete calendar system

 add(field, value) adds the specific
amount to a given field

— Example

* Add 7 days to the current time of the calendar
add(Calendar.DAY_OF MONTH, 7)



Getting date/time information

public static void main(String[] args) {

// Construct a Gregorian calendar for the current date and time

Calendar calendar =
out.
out.
out.
out.
out.
out.

calendar.
System.out.
System.out.
System.out.

calendar.
System.out.

calendar.
System.out.

calendar.
System.out.

calendar.
System.out.

calendar.
System.out.

System.
System.
System.
System.
System.
System.

new GregorianCalendar();

println("Current time is " + new Date());
println("YEAR: " + calendar.get(Calendar.YEAR));
println("MONTH: " + calendar.get(Calendar.MONTH));
println("DATE: " + calendar.get(Calendar.DATE));
println("HOUR: " + calendar.get(Calendar.HOUR));
println("HOUR_OF_DAY: " +
get(Calendar.HOUR_OF_DAY));

println("MINUTE: " + calendar.get(Calendar.MINUTE));
println("SECOND: " + calendar.get(Calendar.SECOND));
println("DAY_OF_WEEK: " +
get(Calendar.DAY_OF_WEEK));

println("DAY_OF_MONTH: " +
get(Calendar.DAY_OF_MONTH));

println("DAY_OF_YEAR: " +
get(Calendar.DAY_OF_YEAR));
println("WEEK_OF_MONTH: " +
get(Calendar.WEEK_OF_MONTH));
println("WEEK_OF_YEAR: " +
get(Calendar.WEEK_OF_YEAR));

println("AM_PM: " + calendar.get(Calendar.AM_PM));

// Construct a calendar for June 16, 2023

Calendar calendarl =

new GregorianCalendar(2023, 5, 16);

String[] dayNameOfWeek = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday"”, "Friday", "Saturday"};

System.out.

println("June 16, 2023, is a " +

dayNameOfWeek[calendarl.get(Calendar.DAY_OF _WEEK) - 1]);



Next Lecture

* |Interfaces



