
Abstract Classes

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 15

Announcements

• Assignment 6 is due today, 11:59 PM

– Upgrade beginning May 27, 12:01 AM

• Assignment 7 will be released today

– Due Jun 1, 11:59 PM

• Educational research study

– May 26, weekly survey

CSE 8B, Spring 2023 2

Abstract classes

• Remember, a superclass defines common behavior for related
subclasses
– Inheritance enables you to define a general class (i.e., a

superclass) and later extend it to more specialized classes (i.e.,
subclasses)

• Sometimes, a superclass is so general it cannot be used to create
objects
– Such a class is called an abstract class

• An abstract class can contain abstract methods that are
implemented in concrete subclasses

• Just like nonabstract classes, models is-a relationships
– For example

• Circle is-a GeometricObject
• Rectangle is-a GeometricObject

CSE 8B, Spring 2023 3

Abstract class example

CSE 8B, Spring 2023 4

Unified Modeling Language (UML)

+ public

protected

- private

• Static variables and methods are underlined

• Abstract class names and methods are italicized

• Open or no arrow is association

• Hollow diamond is aggregation

• Filled diamond is composition

• Hollow triangle is inheritance

CSE 8B, Spring 2023 5

Methods and data fields visibility

Modifiers on
Members
in a Class

Accessed
from the

Same Class

Accessed
from the

Same Package

Accessed
from a Subclass in a

Different Package

Accessed
from a

Different Package

Public ✓ ✓ ✓ ✓

Protected ✓ ✓ ✓

Default (no modifier) ✓ ✓

Private ✓

CSE 8B, Spring 2023 6

abstract modifier

• Abstract classes and abstract methods are denoted using the abstract modifier
– Example

public abstract class GeometricObject {
private String color = "white";
private boolean filled;
private java.util.Date dateCreated;

// Construct a default geometric object
protected GeometricObject() {

dateCreated = new java.util.Date();
}

// Construct a geometric object with color and filled value
protected GeometricObject(String color, boolean filled) {

dateCreated = new java.util.Date();
this.color = color;
this.filled = filled;

}

...

// Abstract method getArea
public abstract double getArea();

// Abstract method getPerimeter
public abstract double getPerimeter();

}

CSE 8B, Spring 2023 7

Constructors in an
abstract class are

protected because
they are only used

by subclasses

Abstract methods are only allowed
in abstract classes

• An abstract method cannot be contained in a
nonabstract class

• If a subclass of an abstract superclass does not
implement all the abstract methods, then the
subclass must be defined abstract

• In other words, in a nonabstract subclass
extended from an abstract class, all the
abstract methods must be implemented, even
if they are not used in the subclass

CSE 8B, Spring 2023 8

An object cannot be created
from an abstract class

• An abstract class cannot be instantiated using
the new operator

• You can still define its constructors, which are
invoked in the constructors of its subclasses

– For example, the constructors of
GeometricObject are invoked in the Circle
class and the Rectangle class

CSE 8B, Spring 2023 9

An abstract class without
any abstract methods

• Remember, a class containing any abstract
methods must be abstract

• It is also possible to define an abstract class
that does not contain any abstract methods

– This class is used as a base class for defining a new
subclass

CSE 8B, Spring 2023 10

Superclass of abstract class
may be concrete

• A subclass can be abstract even if its
superclass is concrete

– For example, the Object class is concrete, but its
subclasses (e.g., GeometricObject) may be
abstract

CSE 8B, Spring 2023 11

Concrete method overridden
to be abstract

• A subclass can override a method from its
superclass to define it abstract

• This is rare, but useful when the
implementation of the method in the
superclass becomes invalid in the subclass

– In this case, the subclass must be defined abstract

CSE 8B, Spring 2023 12

Abstract class as a data type

• Remember, an abstract class cannot be
instantiated using the new operator

• However, an abstract class can be used as a
data type

– Example
GeometricObject[] objects = new GeometricObject[2];
objects[0] = new Circle();
objects[1] = new Rectangle();

CSE 8B, Spring 2023 13

Abstract class example

• Number is an abstract superclass for the
numeric wrapper classes (see lecture 11)
– https://docs.oracle.com/javase/8/docs/api/java/lang/Number.html

– https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Number.html

CSE 8B, Spring 2023 14

byteValue() and
shortValue() call
intValue() and cast

result to byte and
short, respectively

https://docs.oracle.com/javase/8/docs/api/java/lang/Number.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Number.html

Abstract class example

• java.util.Calendar is an abstract base class
for extracting detailed information such as year,
month, date, hour, minute, and second from a
Date object
– An instance of java.util.Date represents a

specific instant in time with millisecond precision

• Subclasses of Calendar can implement specific
calendar systems such as Gregorian calendar
– GregorianCalendar is a concrete subclass of the

abstract class Calendar
– Developers can extend Calendar to implement

others (e.g., Lunar Calendar, Jewish calendar)

CSE 8B, Spring 2023 15

https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Calendar.html

https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Calendar.html

Example: GregorianCalendar is a concrete
subclass of the abstract class Calendar

CSE 8B, Spring 2023 16

The GregorianCalendar Class

• Use new GregorianCalendar() to
construct a default GregorianCalendar
with the current time

• Use new GregorianCalendar(year,
month, date) to construct a
GregorianCalendar with the specified
year, month, and date
– The month parameter is 0-based (e.g., 0 is

January)

CSE 8B, Spring 2023 17

https://docs.oracle.com/javase/8/docs/api/java/util/GregorianCalendar.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/GregorianCalendar.html

https://docs.oracle.com/javase/8/docs/api/java/util/GregorianCalendar.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/GregorianCalendar.html

Calendar is an abstract base class

• The get(int field) method defined in the Calendar class is useful to
extract the date and time information from a Calendar object

• The fields are defined as constants

CSE 8B, Spring 2023 18

The abstract add method

• The add method is abstract in the Calendar
class because its implementation is dependent
on a concrete calendar system

• add(field, value) adds the specific
amount to a given field

– Example

• Add 7 days to the current time of the calendar
add(Calendar.DAY_OF_MONTH, 7)

CSE 8B, Spring 2023 19

Getting date/time information
public static void main(String[] args) {

// Construct a Gregorian calendar for the current date and time
Calendar calendar = new GregorianCalendar();
System.out.println("Current time is " + new Date());
System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
System.out.println("DATE: " + calendar.get(Calendar.DATE));
System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
System.out.println("HOUR_OF_DAY: " +
calendar.get(Calendar.HOUR_OF_DAY));

System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
System.out.println("DAY_OF_WEEK: " +
calendar.get(Calendar.DAY_OF_WEEK));

System.out.println("DAY_OF_MONTH: " +
calendar.get(Calendar.DAY_OF_MONTH));

System.out.println("DAY_OF_YEAR: " +
calendar.get(Calendar.DAY_OF_YEAR));

System.out.println("WEEK_OF_MONTH: " +
calendar.get(Calendar.WEEK_OF_MONTH));

System.out.println("WEEK_OF_YEAR: " +
calendar.get(Calendar.WEEK_OF_YEAR));

System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));

// Construct a calendar for June 16, 2023
Calendar calendar1 = new GregorianCalendar(2023, 5, 16);
String[] dayNameOfWeek = {"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"};
System.out.println("June 16, 2023, is a " +
dayNameOfWeek[calendar1.get(Calendar.DAY_OF_WEEK) - 1]);

}
CSE 8B, Spring 2023 20

Next Lecture

• Interfaces

CSE 8B, Spring 2023 21

