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Announcements

• Assignment 5 is due today, 11:59 PM

– Upgrade beginning May 20, 12:01 AM

• Assignment 6 will be released today

– Due May 24, 11:59 PM

• Educational research study

– May 19, weekly survey
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Inheritance

• Inheritance enables you to define a general class (i.e., a 
superclass) and later extend it to more specialized 
classes (i.e., subclasses)

• A subclass inherits from a superclass
– For example, both a circle and a rectangle are geometric 

objects
• GeometricObject is a superclass
• Circle is a subclass of GeometricObject
• Rectangle is a subclass of GeometricObject

• Models is-a relationships
– For example

• Circle is-a GeometricObject
• Rectangle is-a GeometricObject
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Polymorphism

• Remember, a class defines a type

• A type defined by a subclass is called a subtype, 
and a type defined by its superclass is called a 
supertype
– For example

• Circle is a subtype of GeometricObject, and 
GeometricObject is a supertype for Circle

• Polymorphism means that a variable of a 
supertype can refer to a subtype object
– Greek word meaning “many forms”
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Polymorphism

• An object of a subtype
can be used wherever 
its supertype value is 
required

– For example

• Method m takes a 
parameter of the 
Object type, so you 
can invoke it with any 
object
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public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
}

class Person {
}

Object Person Student GraduateStudent



Declared type and actual type

• The type that declares a 
variable is called the 
variable’s declared type

• The actual class for the 
object referenced by the 
variable is called the actual 
type of the variable 

• Remember, a variable of a 
reference type can hold a 
null value or a reference 
to an instance of the 
declared type
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Declared type and actual type

• In all executions of m, the variable 
x’s declared type is Object

• In the first execution of m, the 
variable x’s actual type is 
GraduateStudent

• In the second execution of m, the 
variable x’s actual type is 
Student

• In the third execution of m, the 
variable x’s actual type is 
Person

• In the fourth execution of m, the 
variable x’s actual type is 
Object
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Dynamic binding

• When the method m is executed, 
the argument x’s toString
method is invoked

• x may be a reference to an 
instance of GraduateStudent, 
Student, Person, or Object

• Classes Student, Person, and 
Object have their own 
implementation of the toString
method

• Which implementation is used will 
be determined dynamically by the 
JVM at runtime

• This capability is known as 
dynamic binding
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public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() {
return "Student";

}
}

class Person {
public String toString() {
return "Person";

}
}

Method 
overridden 

in subclasses

Object Person Student GraduateStudent



 

Cn Cn-1 . . . . . C2 C1 

Object 

Since o is an instance of C1, o is also an 

instance of C2, C3, …, Cn-1, and Cn 

Dynamic binding

• Suppose an object o is an instance of classes C1, C2, ..., Cn-1, and Cn, 
where C1 is a subclass of C2, C2 is a subclass of C3, ..., and Cn-1 is a 
subclass of Cn

– That is, Cn is the most general class, and C1 is the most specific 
class

• In Java, Cn is the Object class
• If object o invokes a method p, the JVM searches the 

implementation for the method p in C1, C2, ..., Cn-1 and Cn, in this 
order, until it is found

• Once an implementation is found, the search stops and the first-
found implementation is invoked
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Matching and binding

• Matching a method signature

– The declared type of the reference variable 
decides which method to match at compile time

• Binding a method implementation

– A method may be implemented in several classes 
along the inheritance chain

– The actual type of the reference variable decides 
which implementation of the method the JVM 
dynamically binds at runtime
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Matching and binding
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public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() {
return "Student";

}
}

class Person {
public String toString() {
return "Person";

}
}

Method 
overridden 

in subclasses

• In all executions of m, the variable 
x’s declared type is Object

• In the first execution of m, the 
variable x’s actual type is 
GraduateStudent

• In the second execution of m, the 
variable x’s actual type is 
Student

• In the third execution of m, the 
variable x’s actual type is 
Person

• In the fourth execution of m, the 
variable x’s actual type is 
Object

Matching at 
compile time

Binding at 
runtime



Casting objects

• You have been using the casting operator to 
convert variables of one primitive type to 
another

• Casting can also be used to convert an object 
of one class type to another within an 
inheritance hierarchy

– This is called casting object
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Upcasting is implicit
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public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
}

class Person extends Object {
}

• The statement
m(new Student());

is equivalent to
Object o = new Student();
m(o);

• It is always possible to 
cast an instance of a 
subclass to a variable of 
a superclass

– This is called upcasting

Implicit 
casting



Downcasting

• Warning: if you find yourself wanting to 
perform (explicit) downcasting from a 
superclass to a subclass, it is a sign you are 
likely approaching things the wrong way!

• Override methods in subclasses instead
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Downcasting

• Downcasting is such a bad practice that 
explicit casting must be used to confirm your 
intention to the compiler

• For example
Object o = new Student();
m(o);
Student b = o; // Compile error
Student c = (Student)o; // No error
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Explicit 
casting



Downcasting

• If you are downcasting a superclass object to an object that 
is not an instance of a subclass, then a runtime exception 
occurs

• Use the instanceof operator to avoid this
– For example

void someMethod(Object myObject) {
... // Some lines of code
// Perform casting if myObject is an instance of Circle
if (myObject instanceof Circle) {
System.out.println("The circle diameter is " + 
((Circle)myObject).getDiameter());

... // Some lines of code
}
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Explicit 
casting

“Safe” 
downcasting



Override equals method in Object

• Remember, usually a class should override the 
toString method so it returns a digestible 
string representation of the object

• You may also want to override the equals
method

– One of the few reasonable times to use 
downcasting
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Override equals method in Object

• For example
public class Circle extends GeometricObject {
private double radius;

...

public boolean equals(Circle circle) {
return this.radius == circle.radius;

}

@Override
public boolean equals(Object o) {
if (o instanceof Circle)
return radius == ((Circle)o).radius;

else
return false;

}
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“Safe” 
downcasting



Methods and data fields visibility

Modifiers on
Members
in a Class

Accessed
from the

Same Class

Accessed
from the

Same Package

Accessed
from a Subclass in a

Different Package

Accessed
from a

Different Package

Public ✓ ✓ ✓ ✓

Protected ✓ ✓ ✓

Default (no modifier) ✓ ✓

Private ✓
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Covered later 
in the quarter



Subclass and visibility/accessibility

• If desired, a subclass can increase accessibility
of a method defined in the superclass, but a 
subclass cannot decrease accessibility of a 
method defined in the superclass
– For example, a subclass may override a 
protected method in its superclass and change 
its visibility to public

– For example, if a method is defined as public in 
the superclass, it must be defined as public in 
the subclass
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Preventing extending and overriding

• You may occasionally want to prevent classes 
from being extended

• In such cases, use the final modifier to 
indicate a class is final and cannot be a parent 
class
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The final modifier

• A final class cannot be extended
– For example

final class Math {
...

}

• A final method cannot be overridden by its 
subclasses

• And remember, a final variable is a constant
– For example

final static double PI = 3.14159;
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The final modifier

• Modifiers are used on classes and class 
members (data and methods), except the 
final modifier can also be used on local 
variables in a method

• A final local variable is a constant inside a 
method

• A best practice is to use final variables 
liberally
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Modifiers

• Access modifiers
– For classes

• public and default (no modifier)

– For methods (including constructors) and data fields
• public, protected, default (no modifier), and private

• Non-access modifiers
– For classes

• final and abstract (covered later in the quarter)

– For methods (excluding constructors)
• final, static, and abstract (covered later in the quarter)

– For data fields
• final and static

• All modifiers
– https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html
– https://docs.oracle.com/javase/specs/jls/se11/html/jls-8.html
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Next Lecture

• Exceptions

• Text file input/output
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