
Polymorphism

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 13

Announcements

• Assignment 5 is due today, 11:59 PM

– Upgrade beginning May 20, 12:01 AM

• Assignment 6 will be released today

– Due May 24, 11:59 PM

• Educational research study

– May 19, weekly survey

CSE 8B, Spring 2023 2

Inheritance

• Inheritance enables you to define a general class (i.e., a
superclass) and later extend it to more specialized
classes (i.e., subclasses)

• A subclass inherits from a superclass
– For example, both a circle and a rectangle are geometric

objects
• GeometricObject is a superclass
• Circle is a subclass of GeometricObject
• Rectangle is a subclass of GeometricObject

• Models is-a relationships
– For example

• Circle is-a GeometricObject
• Rectangle is-a GeometricObject

CSE 8B, Spring 2023 3

Polymorphism

• Remember, a class defines a type

• A type defined by a subclass is called a subtype,
and a type defined by its superclass is called a
supertype
– For example

• Circle is a subtype of GeometricObject, and
GeometricObject is a supertype for Circle

• Polymorphism means that a variable of a
supertype can refer to a subtype object
– Greek word meaning “many forms”

CSE 8B, Spring 2023 4

Polymorphism

• An object of a subtype
can be used wherever
its supertype value is
required

– For example

• Method m takes a
parameter of the
Object type, so you
can invoke it with any
object

CSE 8B, Spring 2023 5

public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
}

class Person {
}

Object Person Student GraduateStudent

Declared type and actual type

• The type that declares a
variable is called the
variable’s declared type

• The actual class for the
object referenced by the
variable is called the actual
type of the variable

• Remember, a variable of a
reference type can hold a
null value or a reference
to an instance of the
declared type

CSE 8B, Spring 2023 6

public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
}

class Person {
}

Object Person Student GraduateStudent

Declared type and actual type

• In all executions of m, the variable
x’s declared type is Object

• In the first execution of m, the
variable x’s actual type is
GraduateStudent

• In the second execution of m, the
variable x’s actual type is
Student

• In the third execution of m, the
variable x’s actual type is
Person

• In the fourth execution of m, the
variable x’s actual type is
Object

CSE 8B, Spring 2023 7

public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
}

class Person {
}

Object Person Student GraduateStudent

Dynamic binding

• When the method m is executed,
the argument x’s toString
method is invoked

• x may be a reference to an
instance of GraduateStudent,
Student, Person, or Object

• Classes Student, Person, and
Object have their own
implementation of the toString
method

• Which implementation is used will
be determined dynamically by the
JVM at runtime

• This capability is known as
dynamic binding

CSE 8B, Spring 2023 8

public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() {
return "Student";

}
}

class Person {
public String toString() {
return "Person";

}
}

Method
overridden

in subclasses

Object Person Student GraduateStudent

Cn Cn-1 C2 C1

Object

Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

Dynamic binding

• Suppose an object o is an instance of classes C1, C2, ..., Cn-1, and Cn,
where C1 is a subclass of C2, C2 is a subclass of C3, ..., and Cn-1 is a
subclass of Cn

– That is, Cn is the most general class, and C1 is the most specific
class

• In Java, Cn is the Object class
• If object o invokes a method p, the JVM searches the

implementation for the method p in C1, C2, ..., Cn-1 and Cn, in this
order, until it is found

• Once an implementation is found, the search stops and the first-
found implementation is invoked

CSE 8B, Spring 2023 9

Matching and binding

• Matching a method signature

– The declared type of the reference variable
decides which method to match at compile time

• Binding a method implementation

– A method may be implemented in several classes
along the inheritance chain

– The actual type of the reference variable decides
which implementation of the method the JVM
dynamically binds at runtime

CSE 8B, Spring 2023 10

Matching and binding

CSE 8B, Spring 2023 11

public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() {
return "Student";

}
}

class Person {
public String toString() {
return "Person";

}
}

Method
overridden

in subclasses

• In all executions of m, the variable
x’s declared type is Object

• In the first execution of m, the
variable x’s actual type is
GraduateStudent

• In the second execution of m, the
variable x’s actual type is
Student

• In the third execution of m, the
variable x’s actual type is
Person

• In the fourth execution of m, the
variable x’s actual type is
Object

Matching at
compile time

Binding at
runtime

Casting objects

• You have been using the casting operator to
convert variables of one primitive type to
another

• Casting can also be used to convert an object
of one class type to another within an
inheritance hierarchy

– This is called casting object

CSE 8B, Spring 2023 12

Upcasting is implicit

CSE 8B, Spring 2023 13

public class PolymorphismDemo {
public static void main(String[] args) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
}

class Person extends Object {
}

• The statement
m(new Student());

is equivalent to
Object o = new Student();
m(o);

• It is always possible to
cast an instance of a
subclass to a variable of
a superclass

– This is called upcasting

Implicit
casting

Downcasting

• Warning: if you find yourself wanting to
perform (explicit) downcasting from a
superclass to a subclass, it is a sign you are
likely approaching things the wrong way!

• Override methods in subclasses instead

CSE 8B, Spring 2023 14

Downcasting

• Downcasting is such a bad practice that
explicit casting must be used to confirm your
intention to the compiler

• For example
Object o = new Student();
m(o);
Student b = o; // Compile error
Student c = (Student)o; // No error

CSE 8B, Spring 2023 15

Explicit
casting

Downcasting

• If you are downcasting a superclass object to an object that
is not an instance of a subclass, then a runtime exception
occurs

• Use the instanceof operator to avoid this
– For example

void someMethod(Object myObject) {
... // Some lines of code
// Perform casting if myObject is an instance of Circle
if (myObject instanceof Circle) {
System.out.println("The circle diameter is " +
((Circle)myObject).getDiameter());

... // Some lines of code
}

CSE 8B, Spring 2023 16

Explicit
casting

“Safe”
downcasting

Override equals method in Object

• Remember, usually a class should override the
toString method so it returns a digestible
string representation of the object

• You may also want to override the equals
method

– One of the few reasonable times to use
downcasting

CSE 8B, Spring 2023 17

Override equals method in Object

• For example
public class Circle extends GeometricObject {
private double radius;

...

public boolean equals(Circle circle) {
return this.radius == circle.radius;

}

@Override
public boolean equals(Object o) {
if (o instanceof Circle)
return radius == ((Circle)o).radius;

else
return false;

}

CSE 8B, Spring 2023 18

“Safe”
downcasting

Methods and data fields visibility

Modifiers on
Members
in a Class

Accessed
from the

Same Class

Accessed
from the

Same Package

Accessed
from a Subclass in a

Different Package

Accessed
from a

Different Package

Public ✓ ✓ ✓ ✓

Protected ✓ ✓ ✓

Default (no modifier) ✓ ✓

Private ✓

CSE 8B, Spring 2023 19

Covered later
in the quarter

Subclass and visibility/accessibility

• If desired, a subclass can increase accessibility
of a method defined in the superclass, but a
subclass cannot decrease accessibility of a
method defined in the superclass
– For example, a subclass may override a
protected method in its superclass and change
its visibility to public

– For example, if a method is defined as public in
the superclass, it must be defined as public in
the subclass

CSE 8B, Spring 2023 20

Preventing extending and overriding

• You may occasionally want to prevent classes
from being extended

• In such cases, use the final modifier to
indicate a class is final and cannot be a parent
class

CSE 8B, Spring 2023 21

The final modifier

• A final class cannot be extended
– For example

final class Math {
...

}

• A final method cannot be overridden by its
subclasses

• And remember, a final variable is a constant
– For example

final static double PI = 3.14159;

CSE 8B, Spring 2023 22

The final modifier

• Modifiers are used on classes and class
members (data and methods), except the
final modifier can also be used on local
variables in a method

• A final local variable is a constant inside a
method

• A best practice is to use final variables
liberally

CSE 8B, Spring 2023 23

Modifiers

• Access modifiers
– For classes

• public and default (no modifier)

– For methods (including constructors) and data fields
• public, protected, default (no modifier), and private

• Non-access modifiers
– For classes

• final and abstract (covered later in the quarter)

– For methods (excluding constructors)
• final, static, and abstract (covered later in the quarter)

– For data fields
• final and static

• All modifiers
– https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html
– https://docs.oracle.com/javase/specs/jls/se11/html/jls-8.html

CSE 8B, Spring 2023 24

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html
https://docs.oracle.com/javase/specs/jls/se11/html/jls-8.html

Next Lecture

• Exceptions

• Text file input/output

CSE 8B, Spring 2023 25

