Inheritance

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B
Lecture 12

Announcements

* Assignment 5is due May 17, 11:59 PM
— Upgrade beginning May 20, 12:01 AM

* Assignment 6 will be released May 17
— Due May 24, 11:59 PM

* Educational research study
— May 19, weekly survey

Inheritance

Suppose you define classes to model circles,
rectangles, and triangles

These classes have many common features

What is the best way to design these classes
so to avoid redundancy?

Object-oriented programming allows you to
define new classes from existing classes

This is called inheritance

Superclasses and subclasses

* |nheritance enables you to define a general class (i.e., a
superclass) and later extend it to more specialized

classes (i.e., subclasses)

e A subclass inherits from a superclass
— For example, both a circle and a rectangle are geometric

objects
* GeometricObject is a superclass
 Circleis asubclass of GeometricObject
 Rectangleis a subclass of GeometricObject

* Models is-a relationships

— For example
e Circle is-a GeometricObject
* Rectangle is-a GeometricObject

Superclasses and subclasses

Superclass

Subclasses

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

The color of the object (default: white).
Indicates whether the object is filled with a color (default: false).
The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

TR

Circle

-radius: double

+Circle()
+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): void

I
Rectangle

-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
color: String, filled: boolean)

+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void
+getArea(): double
+getPerimeter(): double

Superclasses and subclasses

A subclass inherits accessible data fields and
methods from its superclass and may also add
new data fields and methods

— A subclass is not a subset of its superclass

* A subclass usually contains more information and
methods than its superclass

— For example
* A rectangle has a width and height
e Acircle has a radius
* Both have a color

Superclasses and subclasses

* A superclass is also called a parent class or
base class

* A subclass is also called a child class, extended
class, or derived class

— A child class inherits from a parent class
— A subclass extends a superclass
— A derived class derives from a base class

Superclasses and subclasses

* Remember, a class defines a type
* Atype defined by a subclass is called a
subtype, and a type defined by its superclass is

called a supertype

— For example
 Circleis a subtype of GeometricObject, and
GeometricObject is a supertype for Circle

Inheritance

 The keyword extends tells the compiler that
the (sub)class extends another (super)class

* A Java class may inherit directly from only one
superclass

— This restriction is known as single inheritance

— Some other programming languages allow classes
to inherit from one or more classes

* This is known as multiple inheritance

extends keyword

 The keyword extends tells the compiler that
the (sub)class extends another (super)class

* For example

— The Circle class extends the

GeometricObject class using the syntax

public class Circle |extends

GeometricObject

— The Circle class inherits the accessible data
fields and methods of GeometricObject

Circle extends GeometricObject

GeometricObject
-color: String The color of the object (default: white).
-filled: boolean Indicates whether the object is filled with a color (default: false).
-dateCreated: java.util.Date The date when the object was created.
S u p erc I dass +GeometricObject() Creates a GeometricObject.
+GeometricObject(color: String, Creates a GeometricObject with the specified color and filled
filled: boolean) values.
+getColor(): String Returns the color.
+setColor(color: String): void Sets a new color.
+isFilled(): boolean Returns the filled property.
+setFilled(filled: boolean): void Sets a new filled property.
+getDateCreated(): java.util.Date Returns the dateCreated.
+toString(): String Returns a string representation of this object.

=

Circle
-radius: double public class Circle [extends]GeometricObject {
+Circle() private double radius;

+Circle(radius: double)

+Circle(radius: double, color: String, . .
Subclass filled: boolean) public Circle() {

+getRadius(): double }
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): void }

public Circle(double radius) {
this.radius = radius;

Unified Modeling Language (UML)

+ public
- private
e Static variables and methods are underlined

* Open or no arrow is association

 Hollow diamond is aggregation

* Filled diamond is composition

v #OV

* Hollow triangle is inheritance

Methods and data fields visibility

Covered later
in the quarter

Modifiers on Accessed Accessed Accessed Accessed
Members from the froin the from a Subclass in a from a
in a Class Same Class | Same Package | Different Package Different Package

Public

Protected

Default (no modifier)

CSE 8B, Spring 2023 13

Methods and data fields visibility

* Private members cannot be accessed outside of
a class, including one of its subclasses

— Use accessor (getter) and mutator (setter) methods

public class Circle extends GeometricObject {
private double radius;

public Circle() {
}

public Circle(double radius) {
this.radius = radius;

}

public Circle(double radius, String color, boolean filled) {
this.radius = radius;
setColor(color);
setFilled(filled);

}

Superclass constructors and
the super keyword

Remember, a constructor is used to construct
an instance of a class

Unlike properties and methods, a superclass's
constructors are not inherited in the subclass

They can only be invoked from the subclasses’
constructors, using the keyword super

If the keyword super is not explicitly used,
the superclass's no-arg constructor is
automatically invoked

Superclass constructors and
the super keyword

* For example, replace this

public class Circle extends GeometricObject {
private double radius;

public Circle(double radius, String color, boolean filled) {
this.radius = radius;
setColor(color);
setFilled(filled);

}

with this

public class Circle extends GeometricObject {
private double radius;

public Circle(double radius, String color, boolean filled) {

[super|(color, filled);

this.radius = radius; Invoking the superclass
} constructor using super
must be the first statement
in the subclass’s constructor

Superclass constructors and
the super keyword

* If the keyword super is not explicitly used,
the superclass's no-arg constructor is
automatically invoked (as the first statement
in the constructor)

public A() {
}

Is equivalent to

>

public A (double d) {
// some statements

}

IS equivalent to

public A() {
super () ;

}

>

public A (double d) {
super () ;
// some statements

}

Constructor chaining

* Constructing an instance of a class invokes all
the superclasses’ constructors along the
inheritance chain

* This is known as constructor chaining

Constructor chaining

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);
}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");
}
}

Person

Employee

Faculty

Trace code

public class Faculty extends Employee {
public static void main(String[] args) { —
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);
}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

} CSE 8B, Spring 2023

}

Person

Employee

Faculty

20

Trace code

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty(); -

}

Person

ublic Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {

public Employee() { Employee

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);
} Faculty

}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

¥ CSE 8B, Spring 2023 21

}

Trace code

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

Person

ublic Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {

public Employee() {

Employee

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);
} Faculty

}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

¥ CSE 8B, Spring 2023 22

}

Trace code

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

Person

ublic Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() { Employee

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);
} Faculty

}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

} CSE 8B, Spring 2023 23

}

Trace code

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

Person

ublic Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {

public Employee() { Employee

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

} Faculty
}
class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");
t CSE 8B, Spring 2023 24

}

Trace code

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

Person

ublic Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {

public Employee() { Employee

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}

¥

Faculty

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

} CSE 8B, Spring 2023 25

}

Trace code

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

Person

ublic Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {

public Employee() { Employee

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

} Faculty

}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

} CSE 8B, Spring 2023 26

}

Trace code

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

ublic Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");

Person

Employee

System.out.println("(3) Employee's no- constructor is invoked");

}

public Employee(String s) {
System.out.println(s);
}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

} CSE 8B, Spring 2023

}

27

Trace code

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

Person

}
}

class Employee extends Person {
public Employee() { Employee

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);
} Faculty

}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

} CSE 8B, Spring 2023 28

}

Default constructor

Remember, a class may be defined without
constructors

In this case, a no-arg constructor with an empty
body is implicitly defined in the class

This constructor, called a default constructor, is
provided automatically only if no constructors are
explicitly defined in the class

Best practice is to provide (if possible) a no-arg
constructor for every class to make the class
easy to extend and avoid compile-time errors
during constructor chaining

Defining a subclass

* A subclass inherits from a superclass
* You can also

— Add new properties
— Add new methods
— Override the methods of the superclass

Add new methods

* For example

— Add printCircle() method in the Circle

class

public void printCircle() {
System.out.println("The circle is created " +
getDateCreated() + " and the radius is " + radius);

Call superclass method

Override the methods of the superclass

* A subclass inherits methods from a superclass

 Sometimes it is necessary for the subclass to
modify the implementation of a method
defined in the superclass

* This is referred to as method overriding

Override the methods of the superclass

 To override a method, the method must be defined in the
subclass using the same signhature as in its superclass, and
same or subtype of the overridden method’s return type

* A best practice to avoid mistakes is to use a special Java
syntax, called override annotation

— Annotated method is required to override a method in its superclass
* Ifit does not, then there will be a compile-time error

public class Circle extends GeometricObject {
// Other methods are omitted

@Override
public String toString() {
return super.toString() + "\nradius is " + radius;

}

¥

Overriding vs overloading

* Overridden methods
— Have the same signature
— Are in different classes related by inheritance

e Overloaded methods

— Have the same name, but different parameter lists
— Can be either

* In the same class
* |n different classes related by inheritance

Overriding vs overloading

public class Test {
public static void main(Stringl[]
A a = new A();
a.p(10);
a.p(10.0);

args)

}
}

class B {
public void p (double i) {
System.out.println(i * 2);
}
}

class A extends B {

public void p (double i) ({
System.out.println (i) ;
}
}

{

public class Test {

public static void main(String[]
A a = new A();
a.p(10);
a.p(10.0);

}
}

class B {
public void p (double i) {
System.out.println(i * 2);
}
}

class A extends B {

public void p(int 1) ({
System.out.println(i);
}

args)

{

I

Remember to use @Override annotation
(not shown so lines align)

Private methods of the superclass

* An instance method can be overridden only if
it is accessible

* As such, a private method cannot be
overridden because it is not accessible
outside its own class

* If a method defined in a subclass is private in
its superclass, then the two methods are
completely unrelated

Static methods of the superclass

e Like an instance method, a static method can
e inherited

* However, a static method cannot be
overridden

* If a static method defined in the superclass is
redefined in a subclass, the method defined
in the superclass is hidden

this and super keywords

e Similar to using this to reference the calling
object, the keyword super refers to the
superclass of the class which super appears

* The keyword this is the name of a reference
that refers to an object itself

— One common use of the this keyword is to reference
a hidden class member

* The keyword super refers to the superclass of
the class in which super appears

— One common use of the super keyword is to
reference a hidden superclass member

this keyword

 The keyword this refers to an object itself
 The keyword this can be used to

— Call another constructor of the same class
* Syntax
this(arguments);
— Reference a hidden class variable

* Syntax
this.variableName

super keyword

* The keyword super refers to the superclass of
the class in which super appears

* The keyword super can be used to

— Call a superclass constructor
* Syntax
super(arguments);
— Call a superclass method

* Syntax
super.methodName (arguments) ;

The Object class and its methods

* Every class in Java is descended from the
java.lang.0Object class

* |f noinheritance is specified when a class is
defined, the superclass of the class isObject

public class Circle {

}

Equivalent

public class Circle extends Object {

}

The toString() method in Object

* The toString() method returns a string representation
of the object

* The default implementation returns a string consisting
of a class name of which the object is an instance, the
at sign (@), and a number representing this object

 For example

Loan loan = new Loan();
System.out.println(loan.toString());
— The code displays something like Loan@15037e5
— This message is not very helpful or informative

— Usually, you should override the toString method so that it
returns a digestible string representation of the object

Next Lecture

* Polymorphism

