
Inheritance

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 12

Announcements

• Assignment 5 is due May 17, 11:59 PM

– Upgrade beginning May 20, 12:01 AM

• Assignment 6 will be released May 17

– Due May 24, 11:59 PM

• Educational research study

– May 19, weekly survey

CSE 8B, Spring 2023 2

Inheritance

• Suppose you define classes to model circles,
rectangles, and triangles

• These classes have many common features

• What is the best way to design these classes
so to avoid redundancy?

• Object-oriented programming allows you to
define new classes from existing classes

• This is called inheritance

CSE 8B, Spring 2023 3

Superclasses and subclasses

• Inheritance enables you to define a general class (i.e., a
superclass) and later extend it to more specialized
classes (i.e., subclasses)

• A subclass inherits from a superclass
– For example, both a circle and a rectangle are geometric

objects
• GeometricObject is a superclass
• Circle is a subclass of GeometricObject
• Rectangle is a subclass of GeometricObject

• Models is-a relationships
– For example

• Circle is-a GeometricObject
• Rectangle is-a GeometricObject

CSE 8B, Spring 2023 4

Superclasses and subclasses

CSE 8B, Spring 2023 5

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

Superclass

Subclasses

Superclasses and subclasses

• A subclass inherits accessible data fields and
methods from its superclass and may also add
new data fields and methods
– A subclass is not a subset of its superclass

• A subclass usually contains more information and
methods than its superclass

– For example
• A rectangle has a width and height

• A circle has a radius

• Both have a color

CSE 8B, Spring 2023 6

Superclasses and subclasses

• A superclass is also called a parent class or
base class

• A subclass is also called a child class, extended
class, or derived class

– A child class inherits from a parent class

– A subclass extends a superclass

– A derived class derives from a base class

CSE 8B, Spring 2023 7

Superclasses and subclasses

• Remember, a class defines a type

• A type defined by a subclass is called a
subtype, and a type defined by its superclass is
called a supertype

– For example

• Circle is a subtype of GeometricObject, and
GeometricObject is a supertype for Circle

CSE 8B, Spring 2023 8

Inheritance

• The keyword extends tells the compiler that
the (sub)class extends another (super)class

• A Java class may inherit directly from only one
superclass

– This restriction is known as single inheritance

– Some other programming languages allow classes
to inherit from one or more classes

• This is known as multiple inheritance

CSE 8B, Spring 2023 9

extends keyword

• The keyword extends tells the compiler that
the (sub)class extends another (super)class

• For example

– The Circle class extends the
GeometricObject class using the syntax
public class Circle extends GeometricObject

– The Circle class inherits the accessible data
fields and methods of GeometricObject

CSE 8B, Spring 2023 10

Circle extends GeometricObject

11

Superclass

Subclass

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

public class Circle extends GeometricObject {
private double radius;

public Circle() {
}

public Circle(double radius) {
this.radius = radius;

}

CSE 8B, Spring 2023

Unified Modeling Language (UML)

+ public

- private

• Static variables and methods are underlined

• Open or no arrow is association

• Hollow diamond is aggregation

• Filled diamond is composition

• Hollow triangle is inheritance

CSE 8B, Spring 2023 12

Methods and data fields visibility

Modifiers on
Members
in a Class

Accessed
from the

Same Class

Accessed
from the

Same Package

Accessed
from a Subclass in a

Different Package

Accessed
from a

Different Package

Public ✓ ✓ ✓ ✓

Protected ✓ ✓ ✓

Default (no modifier) ✓ ✓

Private ✓

CSE 8B, Spring 2023 13

Covered later
in the quarter

Methods and data fields visibility

• Private members cannot be accessed outside of
a class, including one of its subclasses

– Use accessor (getter) and mutator (setter) methods

CSE 8B, Spring 2023 14

public class Circle extends GeometricObject {
private double radius;

public Circle() {
}

public Circle(double radius) {
this.radius = radius;

}

public Circle(double radius, String color, boolean filled) {
this.radius = radius;
setColor(color);
setFilled(filled);

}

Superclass constructors and
the super keyword

• Remember, a constructor is used to construct
an instance of a class

• Unlike properties and methods, a superclass's
constructors are not inherited in the subclass

• They can only be invoked from the subclasses'
constructors, using the keyword super

• If the keyword super is not explicitly used,
the superclass's no-arg constructor is
automatically invoked

CSE 8B, Spring 2023 15

Superclass constructors and
the super keyword

• For example, replace this

with this

CSE 8B, Spring 2023 16

public class Circle extends GeometricObject {
private double radius;

public Circle(double radius, String color, boolean filled) {
this.radius = radius;
setColor(color);
setFilled(filled);

}

public class Circle extends GeometricObject {
private double radius;

public Circle(double radius, String color, boolean filled) {
super(color, filled);
this.radius = radius;

}
Invoking the superclass
constructor using super
must be the first statement
in the subclass’s constructor

Superclass constructors and
the super keyword

• If the keyword super is not explicitly used,
the superclass's no-arg constructor is
automatically invoked (as the first statement
in the constructor)

CSE 8B, Spring 2023 17

public A(double d) {

 // some statements

}

is equivalent to

public A(double d) {

 super();

 // some statements

}

public A() {

}

is equivalent to

public A() {

 super();

}

Constructor chaining

• Constructing an instance of a class invokes all
the superclasses’ constructors along the
inheritance chain

• This is known as constructor chaining

CSE 8B, Spring 2023 18

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Constructor chaining

CSE 8B, Spring 2023 19

Person

Employee

Faculty

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 20

Person

Employee

Faculty

1. Start from the

main method

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 21

Person

Employee

Faculty

2. Invoke Faculty

constructor

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 22

Person

Employee

Faculty

3. Invoke Employee’s no-

arg constructor

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 23

Person

Employee

Faculty

4. Invoke Employee(String)

constructor

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 24

5. Invoke Person() constructor

Person

Employee

Faculty

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 25

Person

Employee

Faculty

6. Execute println

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 26

Person

Employee

Faculty

7. Execute println

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 27

Person

Employee

Faculty

8. Execute println

public class Faculty extends Employee {
public static void main(String[] args) {

new Faculty();
}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Trace code

CSE 8B, Spring 2023 28

Person

Employee

Faculty

9. Execute println

Default constructor

• Remember, a class may be defined without
constructors

• In this case, a no-arg constructor with an empty
body is implicitly defined in the class

• This constructor, called a default constructor, is
provided automatically only if no constructors are
explicitly defined in the class

• Best practice is to provide (if possible) a no-arg
constructor for every class to make the class
easy to extend and avoid compile-time errors
during constructor chaining

CSE 8B, Spring 2023 29

Defining a subclass

• A subclass inherits from a superclass

• You can also

– Add new properties

– Add new methods

– Override the methods of the superclass

CSE 8B, Spring 2023 30

Add new methods

• For example

– Add printCircle() method in the Circle
class
public void printCircle() {
System.out.println("The circle is created " +
getDateCreated() + " and the radius is " + radius);

}

CSE 8B, Spring 2023 31

Call superclass method

Override the methods of the superclass

• A subclass inherits methods from a superclass

• Sometimes it is necessary for the subclass to
modify the implementation of a method
defined in the superclass

• This is referred to as method overriding

CSE 8B, Spring 2023 32

Override the methods of the superclass

• To override a method, the method must be defined in the
subclass using the same signature as in its superclass, and
same or subtype of the overridden method’s return type

• A best practice to avoid mistakes is to use a special Java
syntax, called override annotation
– Annotated method is required to override a method in its superclass

• If it does not, then there will be a compile-time error

CSE 8B, Spring 2023 33

public class Circle extends GeometricObject {
// Other methods are omitted

@Override
public String toString() {
return super.toString() + "\nradius is " + radius;

}
}

Overriding vs overloading

• Overridden methods

– Have the same signature

– Are in different classes related by inheritance

• Overloaded methods

– Have the same name, but different parameter lists

– Can be either

• In the same class

• In different classes related by inheritance

CSE 8B, Spring 2023 34

Overriding vs overloading

CSE 8B, Spring 2023 35

 public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 a.p(10.0);

 }

}

class B {

 public void p(double i) {

 System.out.println(i * 2);

 }

}

class A extends B {

 // This method overrides the method in B

 public void p(double i) {

 System.out.println(i);

 }

}

public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 a.p(10.0);

 }

}

class B {

 public void p(double i) {

 System.out.println(i * 2);

 }

}

class A extends B {

 // This method overloads the method in B

 public void p(int i) {

 System.out.println(i);

 }

}

Remember to use @Override annotation
(not shown so lines align)

Private methods of the superclass

• An instance method can be overridden only if
it is accessible

• As such, a private method cannot be
overridden because it is not accessible
outside its own class

• If a method defined in a subclass is private in
its superclass, then the two methods are
completely unrelated

CSE 8B, Spring 2023 36

Static methods of the superclass

• Like an instance method, a static method can
be inherited

• However, a static method cannot be
overridden

• If a static method defined in the superclass is
redefined in a subclass, the method defined
in the superclass is hidden

CSE 8B, Spring 2023 37

this and super keywords

• Similar to using this to reference the calling
object, the keyword super refers to the
superclass of the class which super appears

• The keyword this is the name of a reference
that refers to an object itself
– One common use of the this keyword is to reference

a hidden class member

• The keyword super refers to the superclass of
the class in which super appears
– One common use of the super keyword is to

reference a hidden superclass member

CSE 8B, Spring 2023 38

this keyword

• The keyword this refers to an object itself

• The keyword this can be used to

– Call another constructor of the same class

• Syntax
this(arguments);

– Reference a hidden class variable

• Syntax
this.variableName

CSE 8B, Spring 2023 39

super keyword

• The keyword super refers to the superclass of
the class in which super appears

• The keyword super can be used to

– Call a superclass constructor

• Syntax
super(arguments);

– Call a superclass method

• Syntax
super.methodName(arguments);

CSE 8B, Spring 2023 40

The Object class and its methods

• Every class in Java is descended from the
java.lang.Object class

• If no inheritance is specified when a class is
defined, the superclass of the class is Object

CSE 8B, Spring 2023 41

 public class Circle {
 ...

}

Equivalent
public class Circle extends Object {

 ...

}

The toString() method in Object

• The toString() method returns a string representation
of the object

• The default implementation returns a string consisting
of a class name of which the object is an instance, the
at sign (@), and a number representing this object

• For example
Loan loan = new Loan();
System.out.println(loan.toString());
– The code displays something like Loan@15037e5
– This message is not very helpful or informative
– Usually, you should override the toString method so that it

returns a digestible string representation of the object

CSE 8B, Spring 2023 42

Next Lecture

• Polymorphism

CSE 8B, Spring 2023 43

