
Object-Oriented Thinking and
Introduction to Generics

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 11

Announcements

• Assignments 2-4 upgrades due today, 11:59
PM

• Assignment 5 will be released today

– Due May 17, 11:59 PM

• Educational research study

– May 12, weekly survey

CSE 8B, Spring 2023 2

Object-oriented thinking

• The advantages of object-oriented
programming over procedural programming

• Classes provide more flexibility and
modularity for building reusable software

• How to solve problems using the object-
oriented paradigm

• Class design

CSE 8B, Spring 2023 3

Procedural programming vs
object-oriented programming

• Procedural programming

– Data and operations on data are separate

– Requires passing data to methods

• Object-oriented programming

– Data and operations on data are in an object

– Organizes programs like the real world

• All objects are associated with both attributes and activities

– Using objects improves software reusability and
makes programs easier to both develop and maintain

CSE 8B, Spring 2023 4

Method Header

Method body
Black Box

Optional arguments

for Input
Optional return

value

Procedural programming:
method abstraction

• You can think of the method body as a black
box that contains the detailed implementation
for the method

CSE 8B, Spring 2023 5

Object-oriented programming:
class abstraction and encapsulation

• Class abstraction means to separate class implementation from the
use of the class

• The creator of the class provides a description of the class and lets
the user know how the class can be used
– The class contract

• The user of the class does not need to know how the class is
implemented

• The detail of implementation is encapsulated and hidden from the
user
– Class encapsultion
– A class is called an abstract data type (ADT)

CSE 8B, Spring 2023 6

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

Loan

-annualInterestRate: double

-numberOfYears: int

-loanAmount: double

-loanDate: Date

+Loan()

+Loan(annualInterestRate: double,

numberOfYears: int,

loanAmount: double)

+getAnnualInterestRate(): double

+getNumberOfYears(): int

+getLoanAmount(): double

+getLoanDate(): Date

+setAnnualInterestRate(

 annualInterestRate: double): void

+setNumberOfYears(

 numberOfYears: int): void

+setLoanAmount(
 loanAmount: double): void

+getMonthlyPayment(): double

+getTotalPayment(): double

The annual interest rate of the loan (default: 2.5).

The number of years for the loan (default: 1)

The loan amount (default: 1000).

The date this loan was created.

Constructs a default Loan object.

Constructs a loan with specified interest rate, years, and

loan amount.

Returns the annual interest rate of this loan.

Returns the number of the years of this loan.

Returns the amount of this loan.

Returns the date of the creation of this loan.

Sets a new annual interest rate to this loan.

Sets a new number of years to this loan.

Sets a new amount to this loan.

Returns the monthly payment of this loan.

Returns the total payment of this loan.

Class abstraction and encapsulation

• For example, a class for a loan

CSE 8B, Spring 2023 7

The creator of the class
provides a description

of the class and lets the
user know how the
class can be used

The class contract

Class abstraction and encapsulation

• A class is designed for use by many different
users (or customers or clients)

• To be useful in a wide range of applications, a
class should provide a variety of ways for
customization through properties, and
constructors and methods that, together, are
minimal and complete

CSE 8B, Spring 2023 8

Thinking in objects

• Procedural programming focuses on designing
methods

• Object-oriented programming
– Couples data and methods together into objects

– Focuses on designing objects and operations on
objects

• Object-orientated programming combines the
power of procedural programming with an
additional component that integrates data with
operations into objects

CSE 8B, Spring 2023 9

Class relationships

• To design classes, one must understand the
relationships among classes

– Association

– Aggregation

– Composition

– Inheritance (covered next week)

CSE 8B, Spring 2023 10

Association

• A general binary relationship that describes an
activity between two classes

• For example

– A student taking course is an association between
the Student class and the Course class

– A faculty member teaching a course is an
association between the Faculty class and the
Course class

CSE 8B, Spring 2023 11

Association

• Multiplicity

– The number of objects of a class

• For example

– Each student may take any number (*) of courses

– Each course must have 5 to 60 students

– Each course is taught by 1 faculty member

– Each faculty member must teach 0 to 3 courses

CSE 8B, Spring 2023 12

Association

• In Java, associations can be implemented using data fields
and methods
– For example

• A student takes a course
addCourse method in Student class
addStudent method in Course class

• A faculty member teaches a course
addCourse method in Faculty class
setFaculty method in Course class

• The Student class may store the courses a student is taking
private Course[] courseList;

• The Faculty class may store the courses a faculty member is teaching
private Course[] courseList;

• There are many possible ways to implement association
relationships

CSE 8B, Spring 2023 13

Aggregation

• Special form of association representing an
owner-subject relationship
– The owner object is called an aggregating object

and its class is called an aggregating class

– The subject object is called an aggregated object
and its class is called an aggregated class

• Models has-a relationships
– For example

• A student has-a name

• A student has-an address

CSE 8B, Spring 2023 14

Composition

• Aggregation between two objects is called
composition if the existence of the aggregated
object is dependent on the aggregating object

– Exclusive ownership of the subject

– The subject (i.e., aggregated object) cannot
(conceptually) exist on its own

• For example
– A book has-a page and when the book is destroyed, so is the

page

– A page has no meaning or purpose without the book

CSE 8B, Spring 2023 15

Aggregation and composition

• For example

– When the student object is destroyed

• Their name is destroyed (composition)

• Their address is not destroyed (aggregation)

CSE 8B, Spring 2023 16

Name Address Student

Composition Aggregation

1..3 1 1 1

Each address is shared
by up to 3 students

public class Name {

 ...

}

public class Student {

 private Name name;

 private Address address;

 ...

}

public class Address {

 ...

}

Aggregated class Aggregating class Aggregated class

Aggregation and composition

• Usually represented as a data field in the
aggregating class

CSE 8B, Spring 2023 17

Aggregation between same class

• Aggregation may exist between objects of the same
class

– For example, a person may have a supervisor

– For example, a person may have multiple supervisors

CSE 8B, Spring 2023 18

public class Person {
// The type for the data is the class itself
private Person supervisor;
...

}

public class Person {
// The type for the data is the class itself
private Person[] supervisors;
...

}

Aggregation or composition

• Warning: Since aggregation and composition
relationships are represented using classes in
similar ways, many texts do not differentiate
them, calling both compositions

CSE 8B, Spring 2023 19

Class design and development

• For example, a class for a course

CSE 8B, Spring 2023 20

Course

-courseName: String

-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]

+getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

Class design and development

public class TestCourse {

public static void main(String[] args) {

Course course1 = new Course("Data Structures");

Course course2 = new Course("Database Systems");

course1.addStudent("Peter Jones");

course1.addStudent("Brian Smith");

course1.addStudent("Anne Kennedy");

course2.addStudent("Peter Jones");

course2.addStudent("Steve Smith");

System.out.println("Number of students in course1: "

+ course1.getNumberOfStudents());

String[] students = course1.getStudents();

for (int i = 0; i < course1.getNumberOfStudents(); i++)

System.out.print(students[i] + ", ");

System.out.println();

System.out.print("Number of students in course2: "

+ course2.getNumberOfStudents());

}

} CSE 8B, Spring 2023 21

Course

-courseName: String

-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]

+getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

Class design and development
public class Course {

private String courseName;

private String[] students = new String[4];

private int numberOfStudents;

public Course(String courseName) {

this.courseName = courseName;

}

public void addStudent(String student) {

students[numberOfStudents] = student;

numberOfStudents++;

}

public String[] getStudents() {

return students;

}

public int getNumberOfStudents() {

return numberOfStudents;

}

public String getCourseName() {

return courseName;

}

public void dropStudent(String student) {

// TODO

}

} CSE 8B, Spring 2023 22

Course

-courseName: String

-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]

+getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

Class design and development

• Use a UML class diagram to design the class

• Write a test program that uses the class

– Developing a class and using a class are two
separate tasks

– It is easier to implement a class if you must use
the class

• Implement the class

• Use Javadoc to document the class (contract)

CSE 8B, Spring 2023 23

Object-oriented thinking

• Classes provide more flexibility and modularity
for building reusable software

• Class abstraction and encapsulation
– Separate class implementation from the use of the

class
– The creator of the class provides a description of the

class and let the user know how the class can be used
– The user of the class does not need to know how the

class is implemented
– The detail of implementation is encapsulated and

hidden from the user

CSE 8B, Spring 2023 24

Primitive data type values as objects

• A primitive data type is not an object
• But it can be wrapped in an object using a Java

API wrapper class
Boolean
Character (not Char)
Short
Byte
Integer (not Int)
Long
Float
Double

CSE 8B, Spring 2023 25

Notes
• The wrapper classes do not

have no-arg constructors
• The instances of all wrapper

classes are immutable (i.e.,
their internal values cannot
be changed once the objects
are created)

Integer and Double wrapper classes

CSE 8B, Spring 2023 26

java.lang.Integer

-value: int

+MAX_VALUE: int

+MIN_VALUE: int

+Integer(value: int)

+Integer(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

+compareTo(o: Integer): int

+toString(): String

+valueOf(s: String): Integer

+valueOf(s: String, radix: int): Integer

+parseInt(s: String): int

+parseInt(s: String, radix: int): int

java.lang.Double

-value: double

+MAX_VALUE: double

+MIN_VALUE: double

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

+compareTo(o: Double): int

+toString(): String

+valueOf(s: String): Double

+valueOf(s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, radix: int): double

Wrapper classes

• Constructors

• Class Constants MAX_VALUE and MIN_VALUE

• Conversion Methods

CSE 8B, Spring 2023 27

Numeric wrapper class
constructors

• You can construct a wrapper object either
from a primitive data type value or from a
string representing the numeric value

– For example, the constructors for Integer and
Double are

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

CSE 8B, Spring 2023 28

Numeric wrapper class
constants

• Each numerical wrapper class has the constants
MAX_VALUE and MIN_VALUE

• MAX_VALUE represents the maximum value of
the corresponding primitive data type

• For Byte, Short, Integer, and Long,
MIN_VALUE represents the minimum byte, short,
int, and long values

• For Float and Double, MIN_VALUE represents
the minimum positive float and double values

CSE 8B, Spring 2023 29

Numeric wrapper class
conversion methods

• Each numeric wrapper class implements the
abstract methods doubleValue,
floatValue, intValue, longValue, and
shortValue

– Defined in the abstract Number class (covered
later in quarter)

• These methods “convert” objects into
primitive type values

CSE 8B, Spring 2023 30

Numeric wrapper class
static valueOf methods

• The numeric wrapper classes have a useful
class method valueOf(String s)

• This method creates a new object initialized to
the value represented by the specified string

– For example
Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

CSE 8B, Spring 2023 31

Numeric wrapper class
static parsing methods

• Each numeric wrapper class has two
overloaded parsing methods to parse a
numeric string into an appropriate numeric
value based on 10 or any specified radix (e.g.,
2 for binary, 8 for octal, 10 for decimal, 16 for
hexadecimal)
– For example

Integer.parseInt("13") returns 13

Integer.parseInt("13", 10) returns 13

Integer.parseInt("1A", 16) returns 26

CSE 8B, Spring 2023 32

Automatic conversion between primitive
types and wrapper class types

• Converting a primitive value to a wrapper
object is called boxing

• Converting a wrapper object to a primitive
value is called unboxing

• The Java compiler will automatically convert a
primitive data type value to an object using a
wrapper class (autoboxing) and vice versa
(autounboxing), depending on the context

CSE 8B, Spring 2023 33

Automatic conversion between primitive
types and wrapper class types

CSE 8B, Spring 2023 34

Integer[] intArray = {new Integer(2),

 new Integer(4), new Integer(3)};

(a)

Equivalent

(b)

Integer[] intArray = {2, 4, 3};

New JDK 1.5 boxing

Integer[] intArray = {1, 2, 3};
System.out.println(intArray[0] + intArray[1] + intArray[2]);

Autounboxing

Autoboxing

BigInteger and BigDecimal classes

• If you need to compute with very large
integers or high precision floating-point
values, you can use the BigInteger and
BigDecimal classes in the java.math
package

• Both are immutable

• Both extend the Number class and implement
the Comparable interface (covered later in
quarter)

CSE 8B, Spring 2023 35

BigInteger and BigDecimal classes

CSE 8B, Spring 2023 36

BigInteger a = new BigInteger("9223372036854775807");

BigInteger b = new BigInteger("2");

BigInteger c = a.multiply(b); // 9223372036854775807 * 2

System.out.println(c);

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);

System.out.println(c);

Scale

String class

• The String class has 13 constructors and
more than 40 methods

• A good example for learning classes and
objects

CSE 8B, Spring 2023 37

Constructing strings

• Create from a string literal
– Syntax

String newString = new String(stringLiteral);

– Example
String message = new String("Welcome to Java");

– Since strings are used frequently, Java provides a
shorthand initializer for creating a string
String message = "Welcome to Java";

• Create from an array of characters
– Syntax

String newString = new String(charArray);
• where, for example

char[] charArray = {'C', 'S', 'E', ' ', '8', 'B'};

CSE 8B, Spring 2023 38

Strings are immutable

• A String object is immutable (i.e., its
contents cannot be changed once the string is
created)

• The following code does not change the
contents of the string

String s = "Java";

s = "HTML";

CSE 8B, Spring 2023 39

Strings are immutable

String s = "Java";
s = "HTML";

CSE 8B, Spring 2023 40

: String

String object for "Java"

s

After executing String s = "Java";

After executing s = "HTML";

: String

String object for "Java"

: String

String object for "HTML"

Contents cannot be changed

This string object is

now unreferenced
 s

Strings are immutable

String s = "Java";
s = "HTML";

CSE 8B, Spring 2023 41

: String

String object for "Java"

s

After executing String s = "Java";

After executing s = "HTML";

: String

String object for "Java"

: String

String object for "HTML"

Contents cannot be changed

This string object is

now unreferenced
 s

Interned strings

• Since strings are immutable and are
frequently used, to improve efficiency and
save memory, the Java Virtual Machine (JVM)
uses a unique instance for string literals with
the same character sequence

• Such an instance is called interned

CSE 8B, Spring 2023 42

Interned strings

• A new object is created if you use the new
operator

• If you use the string initializer, no new object is
created if the interned object is already created

CSE 8B, Spring 2023 43

s1 == s2 is false
s1 == s3 is true

 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

System.out.println("s1 == s2 is " + (s1 == s2));

System.out.println("s1 == s3 is " + (s1 == s3));

: String

Interned string object for

"Welcome to Java"

: String

A string object for

"Welcome to Java"

s1

s2

s3

Replacing and splitting strings

CSE 8B, Spring 2023 44

java.lang.String

+replace(oldChar: char,

newChar: char): String

+replaceFirst(oldString: String,

newString: String): String

+replaceAll(oldString: String,
newString: String): String

+split(delimiter: String):

String[]

Returns a new string that replaces all matching character in this

string with the new character.

Returns a new string that replaces the first matching substring in

this string with the new substring.

Returns a new string that replace all matching substrings in this
string with the new substring.

Returns an array of strings consisting of the substrings split by the

delimiter.

Replacing a string

• "Welcome".replace('e', 'A')
returns a new string WAlcomA

• "Welcome".replaceFirst("e", "AB")
returns a new string WABlcome

• "Welcome".replace("e", "AB")
returns a new string WABlcomAB

• "Welcome".replace("el", "AB")
returns a new string WABcome

CSE 8B, Spring 2023 45

Splitting a string

• Split a string into an array of strings

– For example, using # as a delimiter
String[] tokens = "CSE#8B#uses#Java".split("#", 0);

for (int i = 0; i < tokens.length; i++)

System.out.print(tokens[i] + " ");

– Displays CSE 8B uses Java

CSE 8B, Spring 2023 46

Matching, replacing, and splitting
by patterns

• You can match, replace, or split a string by
specifying a pattern
– For example

"Java".equals("Java");
"Java".matches("Java");

• This is an extremely useful and powerful feature
known as regular expression
– https://docs.oracle.com/javase/8/docs/api/java/util/r

egex/Pattern.html#sum
– https://docs.oracle.com/en/java/javase/11/docs/api/j

ava.base/java/util/regex/Pattern.html#sum

CSE 8B, Spring 2023 47

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html#sum

Convert character and numbers to strings

• The String class provides several static
valueOf methods for converting a character, an
array of characters, and numeric values to strings

• These methods have the same name valueOf
with different argument types char, char[],
double, long, int, and float
– For example, to convert a double value to a string,

use String.valueOf(5.44)
• The return value is string consists of characters '5', '.',
'4', and '4'

• Compare with String s = 5.44 + "";

CSE 8B, Spring 2023 48

StringBuilder and StringBuffer classes

• The StringBuilder and StringBuffer
classes are alternatives to the String class

• In general, a StringBuilder or
StringBuffer can be used wherever a string is
used

• StringBuilder and StringBuffer are more
flexible than String

• You can add, insert, or append new contents into
a string buffer, whereas the value of a String
object is fixed once the string is created

CSE 8B, Spring 2023 49

StringBuilder constructors

CSE 8B, Spring 2023 50

java.lang.StringBuilder

+StringBuilder()

+StringBuilder(capacity: int)

+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.

Constructs a string builder with the specified capacity.

Constructs a string builder with the specified string.

Modifying strings in the builder

CSE 8B, Spring 2023 51

java.lang.StringBuilder

+append(data: char[]): StringBuilder

+append(data: char[], offset: int, len: int):

StringBuilder

+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder

+delete(startIndex: int, endIndex: int):

StringBuilder

+deleteCharAt(index: int): StringBuilder

+insert(index: int, data: char[], offset: int,

len: int): StringBuilder

+insert(offset: int, data: char[]):

StringBuilder

+insert(offset: int, b: aPrimitiveType):

StringBuilder

+insert(offset: int, s: String): StringBuilder

+replace(startIndex: int, endIndex: int, s:

String): StringBuilder

+reverse(): StringBuilder

+setCharAt(index: int, ch: char): void

Appends a char array into this string builder.

Appends a subarray in data into this string builder.

Appends a primitive type value as a string to this

builder.

Appends a string to this string builder.

Deletes characters from startIndex to endIndex.

Deletes a character at the specified index.

Inserts a subarray of the data in the array to the builder

at the specified index.

Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex

to endIndex with the specified string.

Reverses the characters in the builder.

Sets a new character at the specified index in this

builder.

The toString, capacity, length,
setLength, and charAt methods

CSE 8B, Spring 2023 52

java.lang.StringBuilder

+toString(): String

+capacity(): int

+charAt(index: int): char

+length(): int

+setLength(newLength: int): void

+substring(startIndex: int): String

+substring(startIndex: int, endIndex: int):

String

+trimToSize(): void

Returns a string object from the string builder.

Returns the capacity of this string builder.

Returns the character at the specified index.

Returns the number of characters in this builder.

Sets a new length in this builder.

Returns a substring starting at startIndex.

Returns a substring from startIndex to endIndex-1.

Reduces the storage size used for the string builder.

The ArrayList class

• You can create an array to store objects, but
the array’s size is fixed once the array is
created

• Java provides the ArrayList class that can
be used to store an unlimited number of
objects

CSE 8B, Spring 2023 53

The ArrayList class

CSE 8B, Spring 2023 54

 java.util.ArrayList<E>

+ArrayList()

+add(o: E) : void

+add(index: int, o: E) : void

+clear(): void

+contains(o: Object): boolean

+get(index: int) : E

+indexOf(o: Object) : int

+isEmpty(): boolean

+lastIndexOf(o: Object) : int

+remove(o: Object): boolean

+size(): int

+remove(index: int) : boolean

+set(index: int, o: E) : E

Creates an empty list.

Appends a new element o at the end of this list.

Adds a new element o at the specified index in this list.

Removes all the elements from this list.

Returns true if this list contains the element o.

Returns the element from this list at the specified index.

Returns the index of the first matching element in this list.

Returns true if this list contains no elements.

Returns the index of the last matching element in this list.

Removes the element o from this list.

Returns the number of elements in this list.

Removes the element at the specified index.

Sets the element at the specified index.

The ArrayList class

• ArrayList is known as a generic class with a
generic type E

• You can specify a concrete type to replace E when
creating an ArrayList

• For example

– The below statements creates an ArrayList used to
store strings and assigns its reference to variable cities
ArrayList<String> cities = new ArrayList<String>();

ArrayList<String> cities = new ArrayList<>();

CSE 8B, Spring 2023 55

Comparing arrays and ArrayList

CSE 8B, Spring 2023 56

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] ArrayList<String> list = new ArrayList<>();

Accessing an element a[index] list.get(index);

Updating an element a[index] = "London"; list.set(index, "London");

Returning size a.length list.size();

Adding a new element list.add("London");

Inserting a new element list.add(index, "London");

Removing an element list.remove(index);

Removing an element list.remove(Object);

Removing all elements list.clear();

Array to/from ArrayList

• Creating an ArrayList from an array of
objects
String[] array = {"red", "green", "blue"};

ArrayList<String> list = new ArrayList<>(Arrays.asList(array));

• Creating an array of objects from an ArrayList
String[] array1 = new String[list.size()];

list.toArray(array1);

CSE 8B, Spring 2023 57

Useful methods in java.util.Collections

• Maximum element in ArrayList

java.util.Collections.max

• Minimum element in ArrayList

java.util.Collections.min

• Sort an ArrayList

java.util.Collections.sort

• Shuffle an ArrayList

java.util.Collections.shuffle

CSE 8B, Spring 2023 58

Next Lecture

• Inheritance

CSE 8B, Spring 2023 59

