
Objects and Classes
(Part 2)

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 10

Announcements

• Assignment 4 is due today, 11:59 PM

– Upgrade beginning May 6, 12:01 AM

• Educational research study

– May 5, weekly survey

• Midterm exam is May 8

• Assignments 2-4 upgrades due May 10

CSE 8B, Spring 2023 2

Object-oriented programming

• Object-oriented programming (OOP) involves
programming using objects

• This is the focus of CSE 8B

CSE 8B, Spring 2023 3

Objects and classes

• An object represents an entity in the real
world that can be distinctly identified

– For example, a student, a desk, a circle, a button,
and even a loan can all be viewed as objects

– An object has a unique identity, state, and
behaviors

• Classes are constructs that define objects of
the same type

CSE 8B, Spring 2023 4

Objects and Java classes

• The state of an object consists of a set of data
fields (also known as properties) with their
current values

• The behavior of an object is defined by a set
of methods

• A Java class uses variables to define data fields
and methods to define behaviors

CSE 8B, Spring 2023 5

Instance data fields and methods vs
static data fields methods

• Instance data fields and methods can only be accessed
using an object (i.e., an instance of a class)
– The syntax to access an instance data field is

objectReferenceVariable.variableName

– The syntax to invoke an instance method is
objectReferenceVariable.methodName(arguments)

• Static data fields and methods (i.e., non-instance data
fields and methods) can be accessed without using an
object (i.e., they are not tied to a specific instance of a
class)
– The syntax to access a static data field is

ClassName.variableName

– The syntax to invoke a static method is
ClassName.methodName(arguments)

CSE 8B, Spring 2023 6

Instance variables vs static variables

• An instance variable belongs to a specific
instance of a class

• A static variable is shared by all objects of the
class

– Static variables are shared by all the instances of
the class

– Static constants are final variables shared by all
the instances of the class

CSE 8B, Spring 2023 7

Static members

• In code using a class, the best practice is to
make invocations of static methods and access
of static data fields obvious

• Use
ClassName.methodName(arguments)

ClassName.variableName

• Do not use
objectReferenceVariable.methodName(arguments)

objectReferenceVariable.variableName

CSE 8B, Spring 2023 8

The static modifier

• To declare static variables, constants, and
methods, use the static modifier

• static is a Java keyword

CSE 8B, Spring 2023 9

The static modifier

public class Circle {
double radius; // The radius of the circle
static int numberOfObjects = 0; // The number of objects created

// Construct a circle of radius 1
Circle() {

radius = 1;
numberOfObjects++;

}

// Construct a circle with a specified radius
Circle(double newRadius)
{

radius = newRadius;
numberOfObjects++;

}

// Return numberOfObjects
static int getNumberOfObjects() {

return numberOfObjects;
}

CSE 8B, Spring 2023 10

The static modifier

Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

CSE 8B, Spring 2023 11

Limitations of static methods

• An instance method can
– Invoke an instance or static method

– Access an instance or static data field

• A static method can
– Invoke a static method

– Access a static data field

• A static method cannot
– Invoke an instance method

– Access an instance data field

CSE 8B, Spring 2023 12

Static methods

• If a member method or data field is
independent of any specific instance, then
make it static

• Do not require those using your class to create
instance unless it is absolutely necessary

CSE 8B, Spring 2023 13

Visibility modifiers

• Visibility modifiers can be used to specify the
visibility of a class and its members

• By default, the class, variable, or method can
be accessed by any class in the same package

• Packages can be used to organize classes

– For example, classes C1 and C2 are placed in
package p1, and class C3 is placed in package p2

CSE 8B, Spring 2023 14

Visibility modifiers

• There is no restriction on accessing data fields
and methods from inside the class

• A visibility modifier specifies how data fields
and methods in a class can be accessed from
outside the class

CSE 8B, Spring 2023 15

Visibility modifiers

public
– The class, data, or method is visible to any class in any

package

private
– Modifier cannot be applied to a class, only its

members

– The data or methods can be accessed only by the
declaring class

protected
– Used in inheritance (covered later in the quarter)

CSE 8B, Spring 2023 16

Packages and classes

• The default modifier (i.e., no modifier) on a
class restricts access to within a package

• The public modifier enables unrestricted
access

CSE 8B, Spring 2023 17
package p1 package p2

These are three different files (each class is in its own file)

Compile multiple .java files in the
same directory using javac *.java

Packages, classes, and members

• The private modifier restricts access to within a class
• The default modifier (i.e., no modifier) restricts access

to within a package
• The public modifier enables unrestricted access

CSE 8B, Spring 2023 18

Visibility of own members

• There is no restriction on accessing data fields
and methods from inside the class

• However, an object cannot access its private
members outside the class

CSE 8B, Spring 2023 19

Constructors

• Use public constructors in most cases

• Use a private constructor if you want to
prohibit users from creating an instance of a
class

– For example, in java.lang.Math, the
constructor Math() is private

CSE 8B, Spring 2023 20

Methods and data fields visibility

Modifiers on
Members
in a Class

Accessed
from the

Same Class

Accessed
from the

Same Package

Accessed
from a Subclass in a

Different Package

Accessed
from a

Different Package

Public ✓ ✓ ✓ ✓

Protected ✓ ✓ ✓

Default (no modifier) ✓ ✓

Private ✓

CSE 8B, Spring 2023 21

Covered later
in the quarter

Data field encapsulation

• It is a best practice to declare all data fields
private

• Protects data
– From being set to an arbitrary value mistakenly

(i.e., tampering) outside of the class

• Makes class easier to maintain
– Modify the implementation inside the class

without modifying all existing code currently using
the class outside of the class

CSE 8B, Spring 2023 22

Object-oriented programming:
class abstraction and encapsulation

• Class abstraction means to separate class implementation from the
use of the class

• The creator of the class provides a description of the class and lets
the user know how the class can be used
– The class contract

• The user of the class does not need to know how the class is
implemented

• The detail of implementation is encapsulated and hidden from the
user
– Class encapsultion
– A class is called an abstract data type (ADT)

CSE 8B, Spring 2023 23

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

Accessor and mutator

• Accessor

– Provide a getter method to read a private data field

– Use syntax
public returnType getPropertyName()

public boolean isPropertyName()

• Mutator

– Provide a setter method to modify a private data field

– Use syntax
public void setPropertyName(datatype propertyValue)

CSE 8B, Spring 2023 24

Data encapsulation

CSE 8B, Spring 2023 25

 Circle

-radius: double

-numberOfObjects: int

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getNumberOfObjects(): int

+getArea(): double

The radius of this circle (default: 1.0).

The number of circle objects created.

Constructs a default circle object.

Constructs a circle object with the specified radius.

Returns the radius of this circle.

Sets a new radius for this circle.

Returns the number of circle objects created.

Returns the area of this circle.

The - sign indicates

private modifier

Pass by value

• Remember, Java uses pass by value to pass arguments
to a method

• For a parameter of a primitive type, the actual value is
passed
– Changing the value of the local parameter inside the

method does not affect the value of the variable outside
the method

• For a parameter of an array or object type, the
reference value is passed
– Any changes to the array that occur inside the method

body will affect the original array or object that was
passed as the argument

CSE 8B, Spring 2023 26

Passing objects to methods

public static void main(String[] args) {
Circle myCircle = new Circle(1);
int n = 5;
printAreas(myCircle, n);

}

public static void printAreas(Circle c, int times) {
System.out.println("Radius \t\tArea");
while (times >= 1) {
System.out.println(c.getRadius() + "\t\t" + c.getArea());
c.setRadius(c.getRadius() + 1);
times--;

}
}

CSE 8B, Spring 2023 27

Arrays of objects

• An array can hold objects as well as primitive
type values

• An array of objects is actually an array of
reference variables

CSE 8B, Spring 2023 28

Arrays of objects

• Create an array and each object in it

• When creating an array using new, each
element in the array is a reference variable
with a default value of null

Circle[] circleArray = new Circle[10];
for (int i = 0; i < circleArray.length; i++)
{
circleArray[i] = new Circle();

}

CSE 8B, Spring 2023 29

Arrays of objects

• Invoking circleArray[1].getArea()
involves two levels of referencing

circleArray references to the entire array

circleArray[1] references to a Circle object

CSE 8B, Spring 2023 30

Immutable objects and classes

• Occasionally, it is desirable to create an object
whose contents cannot be changed once the
object has been created

• Such an object is called an immutable object
and its class is called an immutable class

CSE 8B, Spring 2023 31

Immutable objects and classes

• For example, deleting the setRadius method in
the Circle class would make it an immutable
class because radius is private and cannot be
changed without a mutator (i.e., set) method

CSE 8B, Spring 2023 32

 Circle

-radius: double

-numberOfObjects: int

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getNumberOfObjects(): int

+getArea(): double

The radius of this circle (default: 1.0).

The number of circle objects created.

Constructs a default circle object.

Constructs a circle object with the specified radius.

Returns the radius of this circle.

Sets a new radius for this circle.

Returns the number of circle objects created.

Returns the area of this circle.

The - sign indicates

private modifier

Immutable objects and classes

CSE 8B, Spring 2023 33

public class Test {
public static void main(String[] args) {

Student student = new Student(111223333, 1970, 5, 3);
BirthDate date = student.getBirthDate();
date.setYear(2010); // Now the student birth year is changed!

}
}

public class Student {
private int id;
private BirthDate birthDate;

public Student(int ssn,
int year, int month, int day) {

id = ssn;
birthDate = new BirthDate(year, month, day);

}

public int getId() {
return id;

}

public BirthDate getBirthDate() {
return birthDate;

}
}

public class BirthDate {
private int year;
private int month;
private int day;

public BirthDate(int newYear,
int newMonth, int newDay) {

year = newYear;
month = newMonth;
day = newDay;

}

public void setYear(int newYear) {
year = newYear;

}
}

Warning: a class with all
private data fields and
without mutators is not
necessarily immutable

Immutable class

• Requirements of an immutable class

– All data fields must be private

– There cannot be any mutator methods for data
fields

– No accessor methods can return a reference to a
data field that is mutable

CSE 8B, Spring 2023 34

Scope of variables revisited

• The scope of class variables (instance and static data
fields) is the entire class
– They can be declared anywhere inside a class

• Best practice is to declare them at the beginning of the class

– They have default values

• The scope of a local variable starts from its declaration
and continues to the end of the block that contains the
variable
– Java assigns no default value to a local variable inside a

method
– A local variable must be initialized explicitly before it can

be used

CSE 8B, Spring 2023 35

Scope of variables revisited

• If a local variable has the same name as a class variable, then
the local variable takes precedence (i.e., the class variable is
hidden)
public class F {
private int x = 0; // Class variable
private int y = 0;

public F() {
}

public void p() {
int x = 1; // Local variable
System.out.println("x = " + x); // Uses local variable
System.out.println("y = " + y);

}
}

CSE 8B, Spring 2023 36

this reference

• The this keyword is the name of a reference
that refers to an object itself

• One common use of the this keyword is to
reference a hidden class variable
public void p() {

int x = 1; // Local variable
System.out.println("x = " + this.x);
System.out.println("y = " + y);

}

CSE 8B, Spring 2023 37

Class variable

Use this to reference data fields

• For a hidden static variable, use
ClassName.staticVariable

• Best practice is to use the data field name as the
parameter name in the setter method or a
constructor

CSE 8B, Spring 2023 38

public class F {

 private int i = 5;

 private static double k = 0;

 void setI(int i) {

 this.i = i;

 }

 static void setK(double k) {

 F.k = k;

 }

}

Suppose that f1 and f2 are two objects of F.

F f1 = new F();

F f2 = new F();

Invoking f1.setI(10) is to execute

 this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute

 this.i = 45, where this refers f2

Class static variable

Class variable

public class Circle {

 private double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 public Circle() {

 this(1.0);

 }

 public double getArea() {

 return this.radius * this.radius * Math.PI;

 }

}

Every instance variable belongs to an instance represented by this,

which is normally omitted

this must be explicitly used to reference the data

field radius of the object being constructed

this is used to invoke another constructor

this reference

• The this keyword is the name of a reference
that refers to an object itself

• We just used the this keyword is to reference a
hidden class variable

• It can also be used inside a constructor to invoke
another constructor of the same class

CSE 8B, Spring 2023 39

this keyword

• The keyword this refers to an object itself

• The keyword this can be used to

– Call another constructor of the same class

• Syntax
this(arguments);

– Reference a hidden class variable

• Syntax
this.variableName

CSE 8B, Spring 2023 40

Next Lecture

• Object-oriented thinking

CSE 8B, Spring 2023 41

