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Administrivia

* Project 1
+ Ongoing, due 5/2

* Homework #2
+ Ongoing, due 5/2
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Midterm

* In class on Thursday 5/4

 Includes all the material so far (including today)
+ Lectures, homework, and programming projects

* An example exam is on the course website

» Extra office hour 10-11 am on 5/2

* We will review in class on 5/2
+ Bring questions!

* You may bring one 8.5"x11” double-sided sheet of notes to the exam
+ Typed or handwritten
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Synchronization Primitives Summary

* Locks
+ Only provide mutual exclusion
* Semaphores
+ Provide mutual exclusion (binary semaphores)
+ Enable coordination between threads (counting semaphores)
» Condition variables
+ Synchronization point to wait for events
+ Used with locks or inside monitors
* Monitors
+ Synchronized execution using high-level language support
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Today’s Outline

* Deadlock
+ What can go wrong with concurrency?
+ What can we do about it?

« CPU Scheduling
+ What are our goals with scheduling?
+ What scheduling algorithms can we use?
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Deadlock

« Deadlock exists among a set of threads if every thread is waiting for an event
that can be caused only by another thread in the set

Dining Philosophers threads holding locks deadlocked traffic
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Conditions for Deadlock

» Deadlock can exist if an only if the following conditions hold simultaneously:
+ Mutual exclusion: a resource is assigned to at most one thread at once

+ Hold and wait: threads holding resources can request new resources while
continuing to hold old resources

+ No preemption: resources cannot be taken away once obtained
+ Circular wait: one thread waits for another in a circular fashion

« Eliminating any condition eliminates deadlock!
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Strategies for Dealing with Deadlock

* Ignore the problem
+ Ostrich algorithm
* Prevention
+ Make it impossible for deadlock to happen
» Avoidance
+ Control allocation of resources
» Detection and Recovery
+ Look for a cycle in dependencies
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Ignoring Deadlock

The Ostrich Algorithm

If the OS kernel locks up...
+ Reboot

If a device driver locks up... -
+ Remove the device, restart

If an application hangs (“not responding”)...
+ Terminate the application and restart
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Deadlock Prevention

 If we ensure that at least one of the conditions cannot
occur, then deadlock is impossible

+ No mutual exclusion
» Make resources sharable (not always possible)

+ No hold and wait
» Threads cannot hold one resource while requesting another
» Threads try to lock all resources at once at the beginning

+ Preemption
» OS can preempt resources

+ No circular wait

» Impose an order on all resources, request in order
» Popular OS implementation technique when using multiple locks

No circular wait
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Deadlock Avoidance

» Avoidance
+ Threads indicate in advance what resources they will need
+ System carefully schedules threads to ensure that deadlock is not possible
+ Avoids circular dependencies

« Banker's Algorithm

+ Only allocates resources if there is some scheduling order in which every thread
can complete

» Avoidance is tough
+ Hard to determine all resources needed in advance
+ Fine theoretical problem, not as practical to use
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Deadlock Detection and Recovery

» Detection and recovery
+ Allow deadlocks to happen but detect them and recover

* To do this, we need two algorithms:
+ One to determine whether a deadlock has occurred
+ Another to recover from the deadlock
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Deadlock Detection

* Detection

+ Traverse the resource graph looking for cycles
» Expensive

+ Many threads and resources to traverse
* Invoke detection algorithm depending on:

+ How often or likely deadlock is

+ How many threads are likely to be affected when
it occurs
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Deadlock Recovery

 Once a deadlock is detected, we have two
options:
+ Abort threads

» Abort all deadlocked threads — threads need to start
over again

» Abort one thread at a time until the cycle is eliminated
— system needs to rerun detection after each abort
+ Preempt resources (force their release)
» Need to select thread and resource to preempt
» Need to roll back thread to previous state
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Dining Philosophers’ Problem

* How can we solve this problem?

* Which of the 4 approaches should we
take?

* One solution:

Prevention

+ Ensure no circular wait

Assign a number to each fork

+ Acquire forks in increasing order

<>

<>
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Deadlock Summary

« Deadlock occurs when threads are waiting on each other and cannot make
progress

+ Cycles in the Resource Allocation Graph
» Deadlock requires 4 conditions:
+ Mutual exclusion, hold and wait, no resource preemption, circular wait
* Four approaches to dealing with deadlock:
+ Ignore it — live life on the edge
+ Prevention — make one of the 4 conditions impossible (by programmer, usually)
+ Avoidance — carefully control allocation (by the OS with programmer help)
+ Detection and Recovery — look for a cycle, then preempt or abort (by the OS)
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Today’s Outline

* Deadlock
+ What can go wrong with concurrency?
+ What can we do about it?

 CPU Scheduling
+ What are our goals with scheduling?
+ What scheduling algorithms can we use?
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Separation of Policy and Mechanism

Mechanism: tool that achieves some effect

Policy: decision about what effect should be achieved
Example: card keys instead of physical keys
Separation leads to flexibility!
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CPU Scheduling

» Multiprogramming systems share CPU resources by time-slicing the CPU
* Processing illusion: every process thinks it owns the CPU
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CPU Scheduling — Policy vs. Mechanism

yield() {
thread_t old thread = current_thread;
current_thread = get_next_thread(); <+—— policy
append_to_queue(ready_queue, old thread);
context switch(old thread, current thread); <—— mechanism
return;

}

» CPU scheduling mechanisms
+ Context switching — saving state of old thread and restoring state of new thread
+ Thread queues and thread states
+ Timer interrupts
» CPU scheduling policies
+ Which thread should we run next and for how long?
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CPU Scheduler

« The scheduler (aka dispatcher) is the
module that moves threads between create
queues and states thread
+ Let a thread run for a while
+ Save its execution state

resource free,
I/O completion
interrupt

scheduler

+ Load state of another thread i’iiri'sr’ dispatch
+ Letitrun... interrupt
* When does the scheduler run? When... A::(for
+ A thread switches from running to waiting hread resonee
or ready exit

+ A thread is terminated

+ An interrupt or exception occurs
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CPU Scheduling Policies

« The scheduling algorithm (aka policy) determines which thread to run
+ Which thread should we run next?
+ How long should we run it for?
* Today we’ll discuss:
+ Goals of CPU scheduling
+ Well-known CPU scheduling algorithms (or policies)

« We’'ll refer to schedulable entities as jobs
+ These could be processes, threads, people, etc.
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Scheduling Goals

« Scheduling algorithms can have many different goals:
+ Minimize average turnaround time
» Time to complete a job: Timaround = Teompletion = Tarrival
+ Maximize throughput
» Jobs per second
» Minimize overhead (e.g., of context switches)
» Use system resources efficiently (CPU, memory, disk, etc.)

+ Minimize average response time
”» Tlme untiI a JOb starts: Tresponse = Tfirstrun - Tarrival

+ Fairness
» No starvation, no deadlock, fair access to the CPU
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Application Goals

 Different applications may have different goals
« Batch applications
+ E.g., training machine learning models, large scientific simulation
+ Strive for job throughput, turnaround time
 Interactive applications
+ E.g., Zoom, your browser
+ Strive for low response time
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Starvation: A Non-Goal

« Starvation: a situation in which a job is prevented from making progress
because some other job has the resource it requires

+ Resource could be the CPU or a lock
- Starvation is usually a side effect of the scheduling algorithm

+ E.g., a high priority process always prevents a low priority process from running
« Starvation can be a side effect of synchronization

+ E.g., constant supply of readers blocks out any writers
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Scheduling Challenges

» Jobs can have different run times

« Jobs can arrive at different times

* The scheduler can interrupt jobs

« Jobs can use other resources besides the CPU (e.g., I/0)
* The run time of each job may not be known ahead of time
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Preemptive vs. Non-Preemptive Scheduling

« Jobs can be scheduled preemptively or
non-preemptively
+ Preemptive: the scheduler can interrupt a
running job

+ Non-preemptive: the scheduler waits for a
job to explicitly block

create
thread

resource free,
I/O completion
interrupt

scheduler

iel
yield, dispatch

timer

interrupt
block for
resource
thread

exit

CSE 120 — Lecture 8 — CPU Scheduling 28



Scheduling Policies

* First-come first-served (FCFS) or first-in first-out (FIFO)
» Shortest job first (SJF)

» Shortest remaining time to completion first (SRTCF)

* Round robin

* Priority scheduling

» Multi-level feedback queues (MLFQ)
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First-Come First-Served (FCFS) Policy

» First-come first-served (FCFS) or first-in first-out (FIFO)
+ Schedule jobs in the order they arrive
+ Non-preemptive — run them until completion or they block or yield
* Pros: simplicity, jobs treated equally, no starvation
« Con: average waiting time can be large if short jobs wait behind long jobs

.
[

_ whatever
order they
-
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Shortest Job First (SJF)

» Shortest job first (SJF)
+ Run the job with the shortest run time first
+ Non-preemptive
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Shortest Job First (SJF) Examples

« Jobs arrive all at the beginning
+ Joblengths:7,4,1,4

« Jobs arrive over time
+ Average turnaround time = (7 +10+4+10)/4=7.75s

HEEEEEEN HEEN
[

Job 1, Job 2, Job 3, Job 4,
length 7 length4 length1 length 4
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Shortest Job First (SJF)

» Shortest job first (SJF)
+ Run the job with the shortest run time first
+ Non-preemptive
* How do we know how long a job runs for?
* Pro: minimizes average turnaround time if all jobs arrive at the beginning
« Cons:
+ Difficult to predict run times
+ Can’t preempt long jobs
+ Can potentially starve long jobs
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Shortest Remaining Time to Completion First (SRTCF)

Shortest remaining time to completion first (SRTCF)
+ Run the job with the shortest remaining run time first
+ Preemptive

Pro: provably optimal — minimizes average turnaround time

Cons: difficult to predict run times, can potentially starve long jobs »
compared to

Average turnaround time = (16 +5+1+5)/4=6.75s 7758 without

NEEENEEN SN
[

Job 1, Job 2, Job 3, Job 4,
length 7 length4 length1 length 4
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Round Robin

* Round robin
+ Preemptive
+ Each job runs for a time slice or quantum (or until it blocks or is interrupted)
+ Ready queue is treated as a circular queue

* Pros: short response time, fair, no starvation
» Cons: context switches are frequent and can add overhead

\ quantum=0.5s

current job

Ready queue
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FCFS vs. Round Robin — Example 1

» Jobs with equal run times
+ 10 jobs, each takes 100 seconds
*  Which policy will result in lower average turnaround time?
* FCFS (non-preemptive)
+ Job 1: 100s, job 2: 200s, ..., job 10: 1000s
+ Average turnaround time = (100 + 200 + ... + 1000) / 10 = 550s
* Round robin (preemptive)

+ Time slice 1 second and no overhead
+ Job 1: 991s, job2: 992s, ..., job 10: 1000s
+ Average turnaround time = (991 + 992 + ... + 1000) / 10 = 995.5s

* Round robin slows down all (but one) of the jobs!
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FCFS vs. Round Robin — Example 2

When would round robin be a better choice?

Jobs have different run times

+ 1 job takes 100 seconds, 9 jobs take 10 seconds

FCFS (non-preemptive)

+ Job 1: 100s, job 2: 110s, ..., job 10: 190s

+ Average turnaround time = (100 + 110 + ... + 190) / 10 = 145s
Round robin (preemptive)

+ Time slice 1 second and no overhead
+ Job 1:190s, job 2: 92s, ..., job 10: 100s
+ Average turnaround time = (190 + 92 + ... + 100) / 10 = 105.4s

Round robin is faster on average in this example
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Priority Scheduling

 Priority scheduling
+ Assign each job a priority
+ Run the job with the highest priority first
» Use FIFO for jobs with equal priority
+ Can be preemptive or non-preemptive
* Pros: flexibility
« Cons:
+ Starvation — low priority jobs can wait indefinitely

+ Who sets the priorities?
» Internally by the OS
» Externally by users or an administrator
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Multi-level Feedback Queues (MLFQ)

» Multi-level feedback queues (MLFQ)
+ Multiple queues, each with a different
priority
+ Jobs start at highest priority queue
+ If timeout expires, drop one level

+ If timeout doesn’t expire, stay or move up

Q1 (highest priority)

one level

* Pros:
+ Dynamically adapts priorities
+ No starvation
« Cons: more complex, parameters to tune

Q4 (lowest priority)
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Handling |/O

* Modern time-sharing OSes (Unix, Windows, ...) time-slice threads on the
ready list

+ A CPU-bound thread may use its entire quantum (e.g., 1 ms)
+ An 10-bound thread might only use part (e.g., 100 ps) then issue 10

+ The IO-bound thread will go on a wait queue, goes back on the ready list when the
IO completes
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Scheduling Overhead

* Operating system aims to minimize overhead

+ Context switching it not doing useful work, is just overhead

+ Overhead includes making a scheduling decision + context switch
* Typical scheduling quantum: 1 ms
» Typical context-switch time: 1 us
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CPU Utilization

CPU Ultilization is the fraction of time the system spends doing useful work
+ Time doing useful work / total time

Quantum of 1 ms + context-switch overhead of 1 us

Example: 3 CPU-bound jobs

+ Steady state: 1Tms+ 1T ps+1ms+1pus+1ms+1ps...

+ CPU utilization: (3*1ms)/(3*1ms+3*1 ps) =99.9%

Example: 3 I0O-bound jobs

+ 10-bound jobs don’t use the full quantum

+ Steady state: 20 ys+ 1 us+20us+ 1 ps+ 20 us + 1 ps...

+ CPU utilization: (3*20 us) / (3* 20 us + 3 * 1 ps) = 95.2%

CSE 120 — Lecture 8 — CPU Scheduling

42



Scheduling in Practice

Additional challenges
+ Multiple CPU cores — should we schedule them together or independently?
+ Scheduling over groups of threads or processes
+ Generality — supporting many different kinds of workloads

Unix — Multilevel Feedback Queue
MacOS — Multilevel Feedback Queue
Windows — Multilevel Feedback Queue
Linux — Completely Fair Scheduler
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Scheduling Summary

« Scheduler (dispatcher) gets invoked to handle context switches
+ Policy: which thread/process to run next
+ Mechanism: how to switch between threads/processes
* Many potential goals of scheduling algorithms
+ Utilization, throughput, turnaround time, response time, fairness
* Many possible policies
+ FCFS, SJF, SRTCF, Round robin, Priority, MLFQ
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For next class...

« Study for the midterm
« Come with questions!
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