
CSE 120
Principles of Operating Systems

Spring 2023

Lecture 8: CPU Scheduling

Amy Ousterhout



• Project 1
♦ Ongoing, due 5/2

• Homework #2
♦ Ongoing, due 5/2

CSE 120 – Lecture 8 – CPU Scheduling 2

Administrivia



• In class on Thursday 5/4
• Includes all the material so far (including today)

♦ Lectures, homework, and programming projects
• An example exam is on the course website
• Extra office hour 10-11 am on 5/2
• We will review in class on 5/2

♦ Bring questions!
• You may bring one 8.5”x11” double-sided sheet of notes to the exam

♦ Typed or handwritten

CSE 120 – Lecture 8 – CPU Scheduling 3

Midterm



• Locks
♦ Only provide mutual exclusion

• Semaphores
♦ Provide mutual exclusion (binary semaphores)
♦ Enable coordination between threads (counting semaphores)

• Condition variables
♦ Synchronization point to wait for events
♦ Used with locks or inside monitors

• Monitors
♦ Synchronized execution using high-level language support

CSE 120 – Lecture 8 – CPU Scheduling 4

Synchronization Primitives Summary



• Deadlock
♦ What can go wrong with concurrency?
♦ What can we do about it?

• CPU Scheduling
♦ What are our goals with scheduling?
♦ What scheduling algorithms can we use?

CSE 120 – Lecture 8 – CPU Scheduling 5

Today’s Outline



• Deadlock exists among a set of threads if every thread is waiting for an event 
that can be caused only by another thread in the set

CSE 120 – Lecture 8 – CPU Scheduling 6

Deadlock

Dining Philosophers

T1

L1 T2

L2

threads holding locks deadlocked traffic



• Deadlock can exist if an only if the following conditions hold simultaneously:
♦ Mutual exclusion: a resource is assigned to at most one thread at once
♦ Hold and wait: threads holding resources can request new resources while 

continuing to hold old resources
♦ No preemption: resources cannot be taken away once obtained
♦ Circular wait: one thread waits for another in a circular fashion

• Eliminating any condition eliminates deadlock!

CSE 120 – Lecture 8 – CPU Scheduling 7

Conditions for Deadlock



• Ignore the problem
♦ Ostrich algorithm

• Prevention
♦ Make it impossible for deadlock to happen

• Avoidance
♦ Control allocation of resources

• Detection and Recovery
♦ Look for a cycle in dependencies

CSE 120 – Lecture 8 – CPU Scheduling 8

Strategies for Dealing with Deadlock



• The Ostrich Algorithm
• If the OS kernel locks up…

♦ Reboot
• If a device driver locks up…

♦ Remove the device, restart
• If an application hangs (“not responding”)…

♦ Terminate the application and restart

CSE 120 – Lecture 8 – CPU Scheduling 9

Ignoring Deadlock



• If we ensure that at least one of the conditions cannot 
occur, then deadlock is impossible

♦ No mutual exclusion
» Make resources sharable (not always possible)

♦ No hold and wait
» Threads cannot hold one resource while requesting another
» Threads try to lock all resources at once at the beginning

♦ Preemption
» OS can preempt resources

♦ No circular wait
» Impose an order on all resources, request in order
» Popular OS implementation technique when using multiple locks

CSE 120 – Lecture 8 – CPU Scheduling 10

Deadlock Prevention

No circular wait

T1

L1 T2

L2



• Avoidance
♦ Threads indicate in advance what resources they will need
♦ System carefully schedules threads to ensure that deadlock is not possible
♦ Avoids circular dependencies

• Banker’s Algorithm
♦ Only allocates resources if there is some scheduling order in which every thread 

can complete
• Avoidance is tough

♦ Hard to determine all resources needed in advance
♦ Fine theoretical problem, not as practical to use

CSE 120 – Lecture 8 – CPU Scheduling 11

Deadlock Avoidance



• Detection and recovery
♦ Allow deadlocks to happen but detect them and recover

• To do this, we need two algorithms:
♦ One to determine whether a deadlock has occurred
♦ Another to recover from the deadlock

CSE 120 – Lecture 8 – CPU Scheduling 12

Deadlock Detection and Recovery



• Detection
♦ Traverse the resource graph looking for cycles

• Expensive
♦ Many threads and resources to traverse

• Invoke detection algorithm depending on:
♦ How often or likely deadlock is
♦ How many threads are likely to be affected when 

it occurs

CSE 120 – Lecture 8 – CPU Scheduling 13

Deadlock Detection

L1

T3

T1

T2

L2

L3

L4



• Once a deadlock is detected, we have two 
options:

♦ Abort threads
» Abort all deadlocked threads – threads need to start 

over again
» Abort one thread at a time until the cycle is eliminated 

– system needs to rerun detection after each abort
♦ Preempt resources (force their release)

» Need to select thread and resource to preempt
» Need to roll back thread to previous state

CSE 120 – Lecture 8 – CPU Scheduling 14

Deadlock Recovery

L1

T3

T1

T2

L2

L3

L4



• How can we solve this problem?
• Which of the 4 approaches should we 

take?
• One solution:

♦ Prevention
♦ Ensure no circular wait
♦ Assign a number to each fork
♦ Acquire forks in increasing order

CSE 120 – Lecture 8 – CPU Scheduling 16

Dining Philosophers’ Problem

F1

F2

F3

F4F5



• Deadlock occurs when threads are waiting on each other and cannot make 
progress

♦ Cycles in the Resource Allocation Graph
• Deadlock requires 4 conditions:

♦ Mutual exclusion, hold and wait, no resource preemption, circular wait
• Four approaches to dealing with deadlock:

♦ Ignore it – live life on the edge
♦ Prevention – make one of the 4 conditions impossible (by programmer, usually)
♦ Avoidance – carefully control allocation (by the OS with programmer help)
♦ Detection and Recovery – look for a cycle, then preempt or abort (by the OS)

CSE 120 – Lecture 8 – CPU Scheduling 17

Deadlock Summary



• Deadlock
♦ What can go wrong with concurrency?
♦ What can we do about it?

• CPU Scheduling
♦ What are our goals with scheduling?
♦ What scheduling algorithms can we use?

CSE 120 – Lecture 8 – CPU Scheduling 18

Today’s Outline



• Mechanism: tool that achieves some effect
• Policy: decision about what effect should be achieved
• Example: card keys instead of physical keys
• Separation leads to flexibility!

CSE 120 – Lecture 8 – CPU Scheduling 19

Separation of Policy and Mechanism



• Multiprogramming systems share CPU resources by time-slicing the CPU
• Processing illusion: every process thinks it owns the CPU

CSE 120 – Lecture 8 – CPU Scheduling 20

CPU Scheduling



• CPU scheduling mechanisms
♦ Context switching – saving state of old thread and restoring state of new thread
♦ Thread queues and thread states
♦ Timer interrupts

• CPU scheduling policies
♦ Which thread should we run next and for how long?

CSE 120 – Lecture 8 – CPU Scheduling 21

CPU Scheduling – Policy vs. Mechanism
yield() {

thread_t old_thread = current_thread;
current_thread = get_next_thread();
append_to_queue(ready_queue, old_thread);
context_switch(old_thread, current_thread);
return;

}

mechanism

policy



• The scheduler (aka dispatcher) is the 
module that moves threads between 
queues and states

♦ Let a thread run for a while
♦ Save its execution state
♦ Load state of another thread
♦ Let it run…

• When does the scheduler run? When…
♦ A thread switches from running to waiting 

or ready
♦ A thread is terminated
♦ An interrupt or exception occurs

CSE 120 – Lecture 8 – CPU Scheduling 22

CPU Scheduler

Ready

Running

Waiting

thread 
exit

block for 
resource

yield, 
timer 

interrupt

resource free, 
I/O completion 

interrupt

create 
thread

scheduler 
dispatch



• The scheduling algorithm (aka policy) determines which thread to run
♦ Which thread should we run next?
♦ How long should we run it for?

• Today we’ll discuss:
♦ Goals of CPU scheduling
♦ Well-known CPU scheduling algorithms (or policies)

• We’ll refer to schedulable entities as jobs
♦ These could be processes, threads, people, etc.

CSE 120 – Lecture 8 – CPU Scheduling 23

CPU Scheduling Policies



• Scheduling algorithms can have many different goals:
♦ Minimize average turnaround time

» Time to complete a job: Tturnaround = Tcompletion − Tarrival
♦ Maximize throughput

» Jobs per second
» Minimize overhead (e.g., of context switches)
» Use system resources efficiently (CPU, memory, disk, etc.)

♦ Minimize average response time
» Time until a job starts: Tresponse = Tfirstrun − Tarrival

♦ Fairness
» No starvation, no deadlock, fair access to the CPU

CSE 120 – Lecture 8 – CPU Scheduling 24

Scheduling Goals



• Different applications may have different goals
• Batch applications

♦ E.g., training machine learning models, large scientific simulation
♦ Strive for job throughput, turnaround time

• Interactive applications
♦ E.g., Zoom, your browser
♦ Strive for low response time

CSE 120 – Lecture 8 – CPU Scheduling 25

Application Goals



• Starvation: a situation in which a job is prevented from making progress 
because some other job has the resource it requires

♦ Resource could be the CPU or a lock
• Starvation is usually a side effect of the scheduling algorithm

♦ E.g., a high priority process always prevents a low priority process from running
• Starvation can be a side effect of synchronization

♦ E.g., constant supply of readers blocks out any writers

CSE 120 – Lecture 8 – CPU Scheduling 26

Starvation: A Non-Goal



• Jobs can have different run times
• Jobs can arrive at different times
• The scheduler can interrupt jobs
• Jobs can use other resources besides the CPU (e.g., I/O)
• The run time of each job may not be known ahead of time

CSE 120 – Lecture 8 – CPU Scheduling 27

Scheduling Challenges



• Jobs can be scheduled preemptively or 
non-preemptively

♦ Preemptive: the scheduler can interrupt a 
running job

♦ Non-preemptive: the scheduler waits for a
job to explicitly block

CSE 120 – Lecture 8 – CPU Scheduling 28

Preemptive vs. Non-Preemptive Scheduling

Ready

Running

Waiting

thread 
exit

block for 
resource

yield, 
timer 

interrupt

resource free, 
I/O completion 

interrupt

create 
thread

scheduler 
dispatch



• First-come first-served (FCFS) or first-in first-out (FIFO)
• Shortest job first (SJF)
• Shortest remaining time to completion first (SRTCF)
• Round robin
• Priority scheduling
• Multi-level feedback queues (MLFQ)

CSE 120 – Lecture 8 – CPU Scheduling 29

Scheduling Policies



• First-come first-served (FCFS) or first-in first-out (FIFO)
♦ Schedule jobs in the order they arrive
♦ Non-preemptive – run them until completion or they block or yield

• Pros: simplicity, jobs treated equally, no starvation
• Con: average waiting time can be large if short jobs wait behind long jobs

CSE 120 – Lecture 8 – CPU Scheduling 30

First-Come First-Served (FCFS) Policy

run jobs in 
whatever 
order they 
arrive in



• Shortest job first (SJF)
♦ Run the job with the shortest run time first
♦ Non-preemptive

CSE 120 – Lecture 8 – CPU Scheduling 31

Shortest Job First (SJF)



• Jobs arrive all at the beginning
♦ Job lengths: 7, 4, 1, 4

• Jobs arrive over time
♦ Average turnaround time = (7 + 10 + 4 + 10) / 4 = 7.75s

CSE 120 – Lecture 8 – CPU Scheduling 32

Shortest Job First (SJF) Examples

Job 1, 
length 7

Job 2, 
length 4

Job 3, 
length 1

Job 4, 
length 4



• Shortest job first (SJF)
♦ Run the job with the shortest run time first
♦ Non-preemptive

• How do we know how long a job runs for?
• Pro: minimizes average turnaround time if all jobs arrive at the beginning
• Cons:

♦ Difficult to predict run times
♦ Can’t preempt long jobs
♦ Can potentially starve long jobs

CSE 120 – Lecture 8 – CPU Scheduling 33

Shortest Job First (SJF)



• Shortest remaining time to completion first (SRTCF)
♦ Run the job with the shortest remaining run time first
♦ Preemptive

• Pro: provably optimal – minimizes average turnaround time
• Cons: difficult to predict run times, can potentially starve long jobs
• Average turnaround time = (16 + 5 + 1 + 5) / 4 = 6.75s

CSE 120 – Lecture 8 – CPU Scheduling 34

Shortest Remaining Time to Completion First (SRTCF)

Job 1, 
length 7

Job 2, 
length 4

Job 3, 
length 1

Job 4, 
length 4

compared to 
7.75s without 
preemption



• Round robin
♦ Preemptive
♦ Each job runs for a time slice or quantum (or until it blocks or is interrupted)
♦ Ready queue is treated as a circular queue

• Pros: short response time, fair, no starvation
• Cons: context switches are frequent and can add overhead

CSE 120 – Lecture 8 – CPU Scheduling 35

Round Robin

Ready queue

current job

quantum = 0.5 s



• Jobs with equal run times
♦ 10 jobs, each takes 100 seconds

• Which policy will result in lower average turnaround time?
• FCFS (non-preemptive)

♦ Job 1: 100s, job 2: 200s, … , job 10: 1000s
♦ Average turnaround time = (100 + 200 + … + 1000) / 10 = 550s

• Round robin (preemptive)
♦ Time slice 1 second and no overhead
♦ Job 1: 991s, job2: 992s, … , job 10: 1000s
♦ Average turnaround time = (991 + 992 + … + 1000) / 10 = 995.5s

• Round robin slows down all (but one) of the jobs!
CSE 120 – Lecture 8 – CPU Scheduling 36

FCFS vs. Round Robin – Example 1



• When would round robin be a better choice?
• Jobs have different run times

♦ 1 job takes 100 seconds, 9 jobs take 10 seconds
• FCFS (non-preemptive)

♦ Job 1: 100s, job 2: 110s, … , job 10: 190s
♦ Average turnaround time = (100 + 110 + … + 190) / 10 = 145s

• Round robin (preemptive)
♦ Time slice 1 second and no overhead
♦ Job 1: 190s, job 2: 92s, … , job 10: 100s
♦ Average turnaround time = (190 + 92 + … + 100) / 10 = 105.4s

• Round robin is faster on average in this example
CSE 120 – Lecture 8 – CPU Scheduling 37

FCFS vs. Round Robin – Example 2



• Priority scheduling
♦ Assign each job a priority
♦ Run the job with the highest priority first

» Use FIFO for jobs with equal priority
♦ Can be preemptive or non-preemptive

• Pros: flexibility
• Cons:

♦ Starvation – low priority jobs can wait indefinitely
♦ Who sets the priorities?

» Internally by the OS
» Externally by users or an administrator

CSE 120 – Lecture 8 – CPU Scheduling 38

Priority Scheduling



• Multi-level feedback queues (MLFQ)
♦ Multiple queues, each with a different 

priority
♦ Jobs start at highest priority queue
♦ If timeout expires, drop one level
♦ If timeout doesn’t expire, stay or move up

one level
• Pros:

♦ Dynamically adapts priorities
♦ No starvation

• Cons: more complex, parameters to tune

CSE 120 – Lecture 8 – CPU Scheduling 39

Multi-level Feedback Queues (MLFQ)

Q1 (highest priority)

Q4 (lowest priority)



• Modern time-sharing OSes (Unix, Windows, …) time-slice threads on the 
ready list

♦ A CPU-bound thread may use its entire quantum (e.g., 1 ms)
♦ An IO-bound thread might only use part (e.g., 100 μs) then issue IO
♦ The IO-bound thread will go on a wait queue, goes back on the ready list when the

IO completes

CSE 120 – Lecture 8 – CPU Scheduling 40

Handling I/O



• Operating system aims to minimize overhead
♦ Context switching it not doing useful work, is just overhead
♦ Overhead includes making a scheduling decision + context switch

• Typical scheduling quantum: 1 ms
• Typical context-switch time: 1 μs

CSE 120 – Lecture 8 – CPU Scheduling 41

Scheduling Overhead



• CPU Utilization is the fraction of time the system spends doing useful work
♦ Time doing useful work / total time

• Quantum of 1 ms + context-switch overhead of 1 μs
• Example: 3 CPU-bound jobs

♦ Steady state: 1 ms + 1 μs + 1 ms + 1 μs + 1 ms + 1 μs…
♦ CPU utilization: (3 * 1ms) / (3 * 1 ms + 3 * 1 μs) = 99.9%

• Example: 3 IO-bound jobs
♦ IO-bound jobs don’t use the full quantum
♦ Steady state: 20 μs + 1 μs + 20 μs + 1 μs + 20 μs + 1 μs…
♦ CPU utilization: (3 * 20 μs) / (3 * 20 μs + 3 * 1 μs) = 95.2%

CSE 120 – Lecture 8 – CPU Scheduling 42

CPU Utilization



• Additional challenges
♦ Multiple CPU cores – should we schedule them together or independently?
♦ Scheduling over groups of threads or processes
♦ Generality – supporting many different kinds of workloads

• Unix – Multilevel Feedback Queue
• MacOS – Multilevel Feedback Queue
• Windows – Multilevel Feedback Queue
• Linux – Completely Fair Scheduler

CSE 120 – Lecture 8 – CPU Scheduling 43

Scheduling in Practice



• Scheduler (dispatcher) gets invoked to handle context switches
♦ Policy: which thread/process to run next
♦ Mechanism: how to switch between threads/processes

• Many potential goals of scheduling algorithms
♦ Utilization, throughput, turnaround time, response time, fairness

• Many possible policies
♦ FCFS, SJF, SRTCF, Round robin, Priority, MLFQ

CSE 120 – Lecture 8 – CPU Scheduling 44

Scheduling Summary



• Study for the midterm
• Come with questions!

CSE 120 – Lecture 8 – CPU Scheduling 45

For next class…


