CSE 120
Principles of Operating Systems

Spring 2023
Lecture 8: CPU Scheduling

Amy Ousterhout

Administrivia

* Project 1
+ Ongoing, due 5/2

* Homework #2
+ Ongoing, due 5/2

CSE 120 — Lecture 8 — CPU Scheduling

Midterm

* In class on Thursday 5/4

 Includes all the material so far (including today)
+ Lectures, homework, and programming projects

* An example exam is on the course website

» Extra office hour 10-11 am on 5/2

* We will review in class on 5/2
+ Bring questions!

* You may bring one 8.5"x11” double-sided sheet of notes to the exam
+ Typed or handwritten

CSE 120 — Lecture 8 — CPU Scheduling

Synchronization Primitives Summary

* Locks
+ Only provide mutual exclusion
* Semaphores
+ Provide mutual exclusion (binary semaphores)
+ Enable coordination between threads (counting semaphores)
» Condition variables
+ Synchronization point to wait for events
+ Used with locks or inside monitors
* Monitors
+ Synchronized execution using high-level language support

CSE 120 — Lecture 8 — CPU Scheduling

Today’s Outline

* Deadlock
+ What can go wrong with concurrency?
+ What can we do about it?

« CPU Scheduling
+ What are our goals with scheduling?
+ What scheduling algorithms can we use?

CSE 120 — Lecture 8 — CPU Scheduling

Deadlock

« Deadlock exists among a set of threads if every thread is waiting for an event
that can be caused only by another thread in the set

Dining Philosophers threads holding locks deadlocked traffic

CSE 120 — Lecture 8 — CPU Scheduling 6

Conditions for Deadlock

» Deadlock can exist if an only if the following conditions hold simultaneously:
+ Mutual exclusion: a resource is assigned to at most one thread at once

+ Hold and wait: threads holding resources can request new resources while
continuing to hold old resources

+ No preemption: resources cannot be taken away once obtained
+ Circular wait: one thread waits for another in a circular fashion

« Eliminating any condition eliminates deadlock!

CSE 120 — Lecture 8 — CPU Scheduling

Strategies for Dealing with Deadlock

* Ignore the problem
+ Ostrich algorithm
* Prevention
+ Make it impossible for deadlock to happen
» Avoidance
+ Control allocation of resources
» Detection and Recovery
+ Look for a cycle in dependencies

CSE 120 — Lecture 8 — CPU Scheduling

Ignoring Deadlock

The Ostrich Algorithm

If the OS kernel locks up...
+ Reboot

If a device driver locks up... -
+ Remove the device, restart

If an application hangs (“not responding”)...
+ Terminate the application and restart

CSE 120 — Lecture 8 — CPU Scheduling

Deadlock Prevention

 If we ensure that at least one of the conditions cannot
occur, then deadlock is impossible

+ No mutual exclusion
» Make resources sharable (not always possible)

+ No hold and wait
» Threads cannot hold one resource while requesting another
» Threads try to lock all resources at once at the beginning

+ Preemption
» OS can preempt resources

+ No circular wait

» Impose an order on all resources, request in order
» Popular OS implementation technique when using multiple locks

No circular wait

CSE 120 — Lecture 8 — CPU Scheduling 10

Deadlock Avoidance

» Avoidance
+ Threads indicate in advance what resources they will need
+ System carefully schedules threads to ensure that deadlock is not possible
+ Avoids circular dependencies

« Banker's Algorithm

+ Only allocates resources if there is some scheduling order in which every thread
can complete

» Avoidance is tough
+ Hard to determine all resources needed in advance
+ Fine theoretical problem, not as practical to use

CSE 120 — Lecture 8 — CPU Scheduling

11

Deadlock Detection and Recovery

» Detection and recovery
+ Allow deadlocks to happen but detect them and recover

* To do this, we need two algorithms:
+ One to determine whether a deadlock has occurred
+ Another to recover from the deadlock

CSE 120 — Lecture 8 — CPU Scheduling

12

Deadlock Detection

* Detection

+ Traverse the resource graph looking for cycles
» Expensive

+ Many threads and resources to traverse
* Invoke detection algorithm depending on:

+ How often or likely deadlock is

+ How many threads are likely to be affected when
it occurs

CSE 120 — Lecture 8 — CPU Scheduling 13

Deadlock Recovery

 Once a deadlock is detected, we have two
options:
+ Abort threads

» Abort all deadlocked threads — threads need to start
over again

» Abort one thread at a time until the cycle is eliminated
— system needs to rerun detection after each abort
+ Preempt resources (force their release)
» Need to select thread and resource to preempt
» Need to roll back thread to previous state

CSE 120 — Lecture 8 — CPU Scheduling 14

Dining Philosophers’ Problem

* How can we solve this problem?

* Which of the 4 approaches should we
take?

* One solution:

Prevention

+ Ensure no circular wait

Assign a number to each fork

+ Acquire forks in increasing order

<>

<>

CSE 120 — Lecture 8 — CPU Scheduling 16

Deadlock Summary

« Deadlock occurs when threads are waiting on each other and cannot make
progress

+ Cycles in the Resource Allocation Graph
» Deadlock requires 4 conditions:
+ Mutual exclusion, hold and wait, no resource preemption, circular wait
* Four approaches to dealing with deadlock:
+ Ignore it — live life on the edge
+ Prevention — make one of the 4 conditions impossible (by programmer, usually)
+ Avoidance — carefully control allocation (by the OS with programmer help)
+ Detection and Recovery — look for a cycle, then preempt or abort (by the OS)

CSE 120 — Lecture 8 — CPU Scheduling

17

Today’s Outline

* Deadlock
+ What can go wrong with concurrency?
+ What can we do about it?

 CPU Scheduling
+ What are our goals with scheduling?
+ What scheduling algorithms can we use?

CSE 120 — Lecture 8 — CPU Scheduling

18

Separation of Policy and Mechanism

Mechanism: tool that achieves some effect

Policy: decision about what effect should be achieved
Example: card keys instead of physical keys
Separation leads to flexibility!

CSE 120 — Lecture 8 — CPU Scheduling

19

CPU Scheduling

» Multiprogramming systems share CPU resources by time-slicing the CPU
* Processing illusion: every process thinks it owns the CPU

CSE 120 — Lecture 8 — CPU Scheduling

20

CPU Scheduling — Policy vs. Mechanism

yield() {
thread_t old thread = current_thread;
current_thread = get_next_thread(); <+—— policy
append_to_queue(ready_queue, old thread);
context switch(old thread, current thread); <—— mechanism
return;

}

» CPU scheduling mechanisms
+ Context switching — saving state of old thread and restoring state of new thread
+ Thread queues and thread states
+ Timer interrupts
» CPU scheduling policies
+ Which thread should we run next and for how long?

CSE 120 — Lecture 8 — CPU Scheduling 21

CPU Scheduler

« The scheduler (aka dispatcher) is the
module that moves threads between create
queues and states thread
+ Let a thread run for a while
+ Save its execution state

resource free,
I/O completion
interrupt

scheduler

+ Load state of another thread i’iiri'sr’ dispatch
+ Letitrun... interrupt
* When does the scheduler run? When... A::(for
+ A thread switches from running to waiting hread resonee
or ready exit

+ A thread is terminated

+ An interrupt or exception occurs
CSE 120 — Lecture 8 — CPU Scheduling 22

CPU Scheduling Policies

« The scheduling algorithm (aka policy) determines which thread to run
+ Which thread should we run next?
+ How long should we run it for?
* Today we’ll discuss:
+ Goals of CPU scheduling
+ Well-known CPU scheduling algorithms (or policies)

« We’'ll refer to schedulable entities as jobs
+ These could be processes, threads, people, etc.

CSE 120 — Lecture 8 — CPU Scheduling

23

Scheduling Goals

« Scheduling algorithms can have many different goals:
+ Minimize average turnaround time
» Time to complete a job: Timaround = Teompletion = Tarrival
+ Maximize throughput
» Jobs per second
» Minimize overhead (e.g., of context switches)
» Use system resources efficiently (CPU, memory, disk, etc.)

+ Minimize average response time
”» Tlme untiI a JOb starts: Tresponse = Tfirstrun - Tarrival

+ Fairness
» No starvation, no deadlock, fair access to the CPU

CSE 120 — Lecture 8 — CPU Scheduling

24

Application Goals

 Different applications may have different goals
« Batch applications
+ E.g., training machine learning models, large scientific simulation
+ Strive for job throughput, turnaround time
 Interactive applications
+ E.g., Zoom, your browser
+ Strive for low response time

CSE 120 — Lecture 8 — CPU Scheduling

25

Starvation: A Non-Goal

« Starvation: a situation in which a job is prevented from making progress
because some other job has the resource it requires

+ Resource could be the CPU or a lock
- Starvation is usually a side effect of the scheduling algorithm

+ E.g., a high priority process always prevents a low priority process from running
« Starvation can be a side effect of synchronization

+ E.g., constant supply of readers blocks out any writers

CSE 120 — Lecture 8 — CPU Scheduling

26

Scheduling Challenges

» Jobs can have different run times

« Jobs can arrive at different times

* The scheduler can interrupt jobs

« Jobs can use other resources besides the CPU (e.g., I/0)
* The run time of each job may not be known ahead of time

CSE 120 — Lecture 8 — CPU Scheduling

27

Preemptive vs. Non-Preemptive Scheduling

« Jobs can be scheduled preemptively or
non-preemptively
+ Preemptive: the scheduler can interrupt a
running job

+ Non-preemptive: the scheduler waits for a
job to explicitly block

create
thread

resource free,
I/O completion
interrupt

scheduler

iel
yield, dispatch

timer

interrupt
block for
resource
thread

exit

CSE 120 — Lecture 8 — CPU Scheduling 28

Scheduling Policies

* First-come first-served (FCFS) or first-in first-out (FIFO)
» Shortest job first (SJF)

» Shortest remaining time to completion first (SRTCF)

* Round robin

* Priority scheduling

» Multi-level feedback queues (MLFQ)

CSE 120 — Lecture 8 — CPU Scheduling

29

First-Come First-Served (FCFS) Policy

» First-come first-served (FCFS) or first-in first-out (FIFO)
+ Schedule jobs in the order they arrive
+ Non-preemptive — run them until completion or they block or yield
* Pros: simplicity, jobs treated equally, no starvation
« Con: average waiting time can be large if short jobs wait behind long jobs

.
[

_ whatever
order they
-

CSE 120 — Lecture 8 — CPU Scheduling 30

Shortest Job First (SJF)

» Shortest job first (SJF)
+ Run the job with the shortest run time first
+ Non-preemptive

CSE 120 — Lecture 8 — CPU Scheduling

31

Shortest Job First (SJF) Examples

« Jobs arrive all at the beginning
+ Joblengths:7,4,1,4

« Jobs arrive over time
+ Average turnaround time = (7 +10+4+10)/4=7.75s

HEEEEEEN HEEN
[

Job 1, Job 2, Job 3, Job 4,
length 7 length4 length1 length 4

CSE 120 — Lecture 8 — CPU Scheduling

32

Shortest Job First (SJF)

» Shortest job first (SJF)
+ Run the job with the shortest run time first
+ Non-preemptive
* How do we know how long a job runs for?
* Pro: minimizes average turnaround time if all jobs arrive at the beginning
« Cons:
+ Difficult to predict run times
+ Can’t preempt long jobs
+ Can potentially starve long jobs

CSE 120 — Lecture 8 — CPU Scheduling

33

Shortest Remaining Time to Completion First (SRTCF)

Shortest remaining time to completion first (SRTCF)
+ Run the job with the shortest remaining run time first
+ Preemptive

Pro: provably optimal — minimizes average turnaround time

Cons: difficult to predict run times, can potentially starve long jobs »
compared to

Average turnaround time = (16 +5+1+5)/4=6.75s 7758 without

NEEENEEN SN
[

Job 1, Job 2, Job 3, Job 4,
length 7 length4 length1 length 4

CSE 120 — Lecture 8 — CPU Scheduling 34

Round Robin

* Round robin
+ Preemptive
+ Each job runs for a time slice or quantum (or until it blocks or is interrupted)
+ Ready queue is treated as a circular queue

* Pros: short response time, fair, no starvation
» Cons: context switches are frequent and can add overhead

\ quantum=0.5s

current job

Ready queue

CSE 120 — Lecture 8 — CPU Scheduling 35

FCFS vs. Round Robin — Example 1

» Jobs with equal run times
+ 10 jobs, each takes 100 seconds
* Which policy will result in lower average turnaround time?
* FCFS (non-preemptive)
+ Job 1: 100s, job 2: 200s, ..., job 10: 1000s
+ Average turnaround time = (100 + 200 + ... + 1000) / 10 = 550s
* Round robin (preemptive)

+ Time slice 1 second and no overhead
+ Job 1: 991s, job2: 992s, ..., job 10: 1000s
+ Average turnaround time = (991 + 992 + ... + 1000) / 10 = 995.5s

* Round robin slows down all (but one) of the jobs!

CSE 120 — Lecture 8 — CPU Scheduling

FCFS vs. Round Robin — Example 2

When would round robin be a better choice?

Jobs have different run times

+ 1 job takes 100 seconds, 9 jobs take 10 seconds

FCFS (non-preemptive)

+ Job 1: 100s, job 2: 110s, ..., job 10: 190s

+ Average turnaround time = (100 + 110 + ... + 190) / 10 = 145s
Round robin (preemptive)

+ Time slice 1 second and no overhead
+ Job 1:190s, job 2: 92s, ..., job 10: 100s
+ Average turnaround time = (190 + 92 + ... + 100) / 10 = 105.4s

Round robin is faster on average in this example

CSE 120 — Lecture 8 — CPU Scheduling

37

Priority Scheduling

 Priority scheduling
+ Assign each job a priority
+ Run the job with the highest priority first
» Use FIFO for jobs with equal priority
+ Can be preemptive or non-preemptive
* Pros: flexibility
« Cons:
+ Starvation — low priority jobs can wait indefinitely

+ Who sets the priorities?
» Internally by the OS
» Externally by users or an administrator

CSE 120 — Lecture 8 — CPU Scheduling

38

Multi-level Feedback Queues (MLFQ)

» Multi-level feedback queues (MLFQ)
+ Multiple queues, each with a different
priority
+ Jobs start at highest priority queue
+ If timeout expires, drop one level

+ If timeout doesn’t expire, stay or move up

Q1 (highest priority)

one level

* Pros:
+ Dynamically adapts priorities
+ No starvation
« Cons: more complex, parameters to tune

Q4 (lowest priority)

CSE 120 — Lecture 8 — CPU Scheduling 39

Handling |/O

* Modern time-sharing OSes (Unix, Windows, ...) time-slice threads on the
ready list

+ A CPU-bound thread may use its entire quantum (e.g., 1 ms)
+ An 10-bound thread might only use part (e.g., 100 ps) then issue 10

+ The IO-bound thread will go on a wait queue, goes back on the ready list when the
IO completes

CSE 120 — Lecture 8 — CPU Scheduling 40

Scheduling Overhead

* Operating system aims to minimize overhead

+ Context switching it not doing useful work, is just overhead

+ Overhead includes making a scheduling decision + context switch
* Typical scheduling quantum: 1 ms
» Typical context-switch time: 1 us

CSE 120 — Lecture 8 — CPU Scheduling

41

CPU Utilization

CPU Ultilization is the fraction of time the system spends doing useful work
+ Time doing useful work / total time

Quantum of 1 ms + context-switch overhead of 1 us

Example: 3 CPU-bound jobs

+ Steady state: 1Tms+ 1T ps+1ms+1pus+1ms+1ps...

+ CPU utilization: (3*1ms)/(3*1ms+3*1 ps) =99.9%

Example: 3 I0O-bound jobs

+ 10-bound jobs don’t use the full quantum

+ Steady state: 20 ys+ 1 us+20us+ 1 ps+ 20 us + 1 ps...

+ CPU utilization: (3*20 us) / (3* 20 us + 3 * 1 ps) = 95.2%

CSE 120 — Lecture 8 — CPU Scheduling

42

Scheduling in Practice

Additional challenges
+ Multiple CPU cores — should we schedule them together or independently?
+ Scheduling over groups of threads or processes
+ Generality — supporting many different kinds of workloads

Unix — Multilevel Feedback Queue
MacOS — Multilevel Feedback Queue
Windows — Multilevel Feedback Queue
Linux — Completely Fair Scheduler

CSE 120 — Lecture 8 — CPU Scheduling

43

Scheduling Summary

« Scheduler (dispatcher) gets invoked to handle context switches
+ Policy: which thread/process to run next
+ Mechanism: how to switch between threads/processes
* Many potential goals of scheduling algorithms
+ Utilization, throughput, turnaround time, response time, fairness
* Many possible policies
+ FCFS, SJF, SRTCF, Round robin, Priority, MLFQ

CSE 120 — Lecture 8 — CPU Scheduling

44

For next class...

« Study for the midterm
« Come with questions!

CSE 120 — Lecture 8 — CPU Scheduling

45

