
CSE 120
Principles of Operating Systems

Spring 2023

Lecture 6: Semaphores

Amy Ousterhout



• Project 1
♦ Extended, due 5/2

• Homework #2
• Thanks for the #FinAid feedback

CSE 120 – Lecture 6 – Semaphores 2

Administrivia



withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

return balance;
}

• Interleaved executions and shared resources can lead to race conditions
♦ Results depend on the timing execution of the code

• Critical sections
♦ Sections of code in which only one thread may be executing at a given time

• Locks can solve this problem by providing mutual exclusion

critical 
section

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

CSE 120 – Lecture 6 – Semaphores 3

Synchronization



• Use a queue to block waiters
• Leave interrupts enabled within the critical section
• Use disabling interrupts or spinning only to protect the critical sections within 

acquire/release

CSE 120 – Lecture 6 – Semaphores 4

Implementing Locks

acquire(lock)
…
Critical section
…
release(lock)

Interrupts Enabled 

Interrupts Disabled 

Interrupts Disabled 

Implementing a lock by disabling interrupts

acquire(lock)
…
Critical section
…
release(lock)

Interrupts 
Enabled 

Spin lock

Spin lock

Implementing a lock with test_and_set



• Locks are useful for implementing critical sections
• But locks have limited semantics

♦ Just provide mutual exclusion
• Mutual exclusion does not solve all synchronization problems
• Sometimes we want other semantics, for example:

♦ Wait for shared resources to become available
♦ Allow multiple threads to generate different resources
♦ Use certain conditions to decide when to enter a critical section

CSE 120 – Lecture 6 – Semaphores 5

Synchronization Primitives



• Other synchronization primitives
♦ Why would we want more than just locks?

• Semaphores
♦ What is a semaphore?
♦ How can we use them?
♦ How can we implement them?

CSE 120 – Lecture 6 – Semaphores 6

Today’s Outline



• Also known as the Bounded Buffer problem
• Producer: generates resources
• Consumer: uses up resources
• Buffers: fixed size, used to hold resources 

between production and consumption

CSE 120 – Lecture 6 – Semaphores 7

Producer-Consumer Problem

Producer 
adds items

Consumer 
takes items



• Real-life example: restaurant
♦ Chefs produce pizza
♦ Waiters “consume” pizza to deliver it to 

customers
♦ Limited counter space to hold food

• Operating system examples
♦ Memory pages
♦ Disk blocks
♦ I/O

CSE 120 – Lecture 6 – Semaphores 8

Producer-Consumer Examples

Chefs add 
pizzas

Waiters 
deliver 
pizzas to 
tables

counter 
space



• Producer and consumer can execute at different 
rates

♦ No serialization of one behind the other
♦ There can be multiple producers and multiple 

consumers
♦ Tasks are independent
♦ The buffer allows each to run without explicit handoff

• Synchronization: ensuring concurrent producers 
and consumers access the buffer in a correct way

♦ What is a “correct way”?

CSE 120 – Lecture 6 – Semaphores 9

Producer-Consumer Problem

Producer 
adds items

Consumer 
takes items



CSE 120 – Lecture 6 – Semaphores 10

Producer-Consumer

while (1) {
produce an item

insert item in buffer
count++;

}

Producer
while (1) {

remove item from buffer
count--;

consume an item
}

Consumer

• What’s wrong with this naïve solution?

count = 3



CSE 120 – Lecture 6 – Semaphores 11

Producer-Consumer with Locks

while (1) {
produce an item

acquire(lock);
insert item in buffer
count++;
release(lock);

}

Producer
while (1) {

acquire(lock);
remove item from buffer
count--;
release(lock);

consume an item
}

Consumer

• Use a lock to protect the count variable and the buffer
• Does this work?

count = 3



• Locks provide mutual exclusion
♦ Only one thread can be in the critical section at one time

• Locks do not provide ordering or sequencing
♦ How does the producer know when to stop producing?
♦ How does the consumer know when it can consume?

CSE 120 – Lecture 6 – Semaphores 12

Limitations of Locks



CSE 120 – Lecture 6 – Semaphores 13

Producer-Consumer with Locks and Sleep/Wake

while (1) {
produce an item
if (count == N)
sleep();

acquire(lock);
insert item in buffer
count++;
release(lock);
if (count == 1)
wakeup(consumer)

}

Producer
while (1) {
if (count == 0)
sleep();

acquire(lock);
remove item from buffer
count--;
release(lock);
if (count == N-1)
wakeup(producer)

consume an item
}

Consumer

• Use sleep/wakeup to manage buffer capacity
• Does this work?

count = 2
N = 8



CSE 120 – Lecture 6 – Semaphores 14

Producer-Consumer with Locks and Sleep/Wake

while (1) {
produce an item
if (count == N)
sleep();

acquire(lock);
insert item in buffer
count++;
release(lock);
if (count == 1)
wakeup(consumer)

}

Producer
while (1) {
if (count == 0)
sleep();

acquire(lock);
remove item from buffer
count--;
release(lock);
if (count == N-1)
wakeup(producer)

consume an item
}

Consumer

• Both sleep and never wake up
• Lost the wakeup – is there any way to “remember” it?

count = 0
N = 8

Context 
switch

count = 1
N = 8

count = 2
N = 8

count = 3
N = 8

count = 4
N = 8

count = 5
N = 8

count = 6
N = 8

count = 7
N = 8

count = 8
N = 8



• Need a way to count or remember the number of events
• Need more powerful synchronization mechanisms

♦ Semaphores
♦ Condition variables
♦ Monitors
♦ Etc.

CSE 120 – Lecture 6 – Semaphores 15

Limitations of Locks and Sleep/Wake



• Other synchronization primitives
♦ Why would we want more than just locks?

• Semaphores
♦ What is a semaphore?
♦ How can we use them?
♦ How can we implement them?

CSE 120 – Lecture 6 – Semaphores 16

Today’s Outline



• A synchronization variable that takes on non-negative integer values
♦ Invented by Edsger Dijkstra in the mid 60’s

• Semaphores support two operations:
♦ wait(): an atomic operation that waits for the semaphore to become greater than 

0, then decrements it by 1
» Also P() after the Dutch word for “try to reduce”

♦ signal(): an atomic operation that increments the semaphore by 1
» Also V() after the Dutch word for increment

♦ Initialize the semaphore to some value
♦ Cannot read the semaphore’s value directly

CSE 120 – Lecture 6 – Semaphores 17

Semaphores



• Spinning version

• Blocking version

CSE 120 – Lecture 6 – Semaphores 18

Semaphores

wait(s) {
while (s <= 0)
;

s--;
}

signal(s) {
s++;

}

wait(s) {
if (s <= 0)
sleep();

s--;
}

signal(s) {
if (queued thread)
wakeup();

s++;
}

executed 
atomically!



• Each semaphore is associated with a queue of waiting threads
• When wait() is called by a thread:

♦ If semaphore is open (positive), thread continues
♦ If semaphore is closed (non-positive), thread blocks on queue

• The signal() opens the semaphore:
♦ If a thread is waiting on the queue, the thread is unblocked
♦ If no threads are waiting on the queue, the signal is remembered for the next 

thread
» signal() has “history”
» The “history” is a counter

CSE 120 – Lecture 6 – Semaphores 19

Blocking Semaphores

wait(s) {
if (s <= 0)
sleep();

s--;
}

signal(s) {
if (queued thread)
wakeup();

s++;
}



• Semaphores come in two types
• Binary semaphore

♦ Represents single access to a resource
♦ Guarantees mutual exclusion to a critical section

• Counting semaphore
♦ Represents a resource with many units available
♦ Multiple threads can pass the semaphore at once
♦ Number of threads determined by the semaphore “count”

• Binary has count = 1, counting has count = N

CSE 120 – Lecture 6 – Semaphores 20

Semaphore Types



• What happens if initially s = 1 and three threads want to execute:
♦ Thread 1:
♦ Thread 2:
♦ Thread 3:

CSE 120 – Lecture 6 – Semaphores 21

Semaphore Example: Binary Semaphore

wait(s) {
while (s <= 0)
;

s--;
}

signal(s) {
s++;

}

wait(), …, signal()

wait(), …, signal()

wait(), …, signal()



• Execution, starting with s = 1:
♦ Thread 1:
♦ Thread 2:
♦ Thread 3:

• The semaphore behaves like a lock!

CSE 120 – Lecture 6 – Semaphores 22

Semaphore Example: Binary Semaphore

wait(s) {
while (s <= 0)
;

s--;
}

signal(s) {
s++;

}

wait(), …, signal()

wait()

wait() …, signal()

…, signal()



• What happens if initially s = 2 and three threads want to execute:
♦ Thread 1:
♦ Thread 2:
♦ Thread 3:

CSE 120 – Lecture 6 – Semaphores 23

Semaphore Example: Counting Semaphore

wait(s) {
while (s <= 0)
;

s--;
}

signal(s) {
s++;

}

wait(), …, signal()

wait(), …, signal()

wait(), …, signal()



wait() …, signal()

• Execution, starting with s = 2:
♦ Thread 1:
♦ Thread 2:
♦ Thread 3:

• Multiple threads can run at once

CSE 120 – Lecture 6 – Semaphores 24

Semaphore Example: Counting Semaphore

wait(s) {
while (s <= 0)
;

s--;
}

signal(s) {
s++;

}

wait(), …, signal()

wait(), …, signal()



• Semaphores have a value, enabling more semantics:
♦ When at most one, can be used for mutual exclusion (only 1 thread in a critical 

section)
♦ When greater than 1, can allow multiple threads to access resources

• Two use cases:
♦ Mutual exclusion – only 1 thread accessing a resource at a time
♦ Event sequencing – permit threads to wait for certain things to happen

CSE 120 – Lecture 6 – Semaphores 25

Benefits of Semaphores over Locks



• Other synchronization primitives
♦ Why would we want more than just locks?

• Semaphores
♦ What is a semaphore?
♦ How can we use them?
♦ How can we implement them?

CSE 120 – Lecture 6 – Semaphores 26

Today’s Outline



• signal(s) increments s
♦ “just produced an item”
♦ s value = how many items have been produced

• wait(s) will return without waiting only if s > 0
♦ “wait until there is at least one item and then consume one item”

• What resources are we producing/consuming?
♦ Items and empty spaces

CSE 120 – Lecture 6 – Semaphores 27

Producer-Consumer with Semaphores



• Two constraints:
♦ Consumer must wait for the producer to produce items
♦ Producer must wait for the consumer to empty spaces

• Use a separate semaphore for each constraint:
♦ full_count = 0
♦ empty_count = N

CSE 120 – Lecture 6 – Semaphores 28

Producer-Consumer with Semaphores

full count = 3
empty count = 5



CSE 120 – Lecture 6 – Semaphores 29

Producer-Consumer with Semaphores

while (1) {
produce an item
wait(empty_count)

insert item in buffer
count++;

signal(full_count)
}

Producer
while (1) {
wait(full_count)

remove item from buffer
count--;

signal(empty_count)

consume an item
}

Consumer

• Initialization: full_count = 0, empty_count = N
• Does this work?

count = 2
N = 8



• Three constraints:
♦ Consumer must wait for the producer to produce items
♦ Producer must wait for the consumer to empty spaces
♦ Only one thread can manipulate the buffer at once

• Use a separate semaphore for the first two constraints:
♦ full_count = 0
♦ empty_count = N

• And a lock or semaphore for the third

CSE 120 – Lecture 6 – Semaphores 30

Producer-Consumer with Semaphores

full count = 3
empty count = 5



CSE 120 – Lecture 6 – Semaphores 31

Producer-Consumer with Semaphores

while (1) {
produce an item
wait(empty_count)

acquire(lock);
insert item in buffer
count++;
release(lock);
signal(full_count)

}

Producer
while (1) {
wait(full_count)

acquire(lock);
remove item from buffer
count--;
release(lock);
signal(empty_count)

consume an item
}

Consumer

• Does this work?
• Yes!

count = 2
N = 8



• An object is shared among several threads
• Some threads only read the object, others only write it
• We can allow multiple readers but only one writer
• Used with many data objects

♦ Bank account example
♦ Linked list, tree, …

CSE 120 – Lecture 6 – Semaphores 32

Readers-Writers Problem



• Constraints:
♦ Writers can only proceed if there are no readers or writers
♦ Readers can only proceed if there are no writers

• How can we use semaphores to implement this protocol?
• Use three variables:

♦ int read_count: number of threads currently reading
♦ semaphore mutex: lock to control access to read_count
♦ semaphore block_write: allows one writer or many readers

CSE 120 – Lecture 6 – Semaphores 33

Readers-Writers with Semaphores



CSE 120 – Lecture 6 – Semaphores 34

Readers-Writers with Semaphores

write() {
wait(block_write);

do the writing

signal(block_write);
}

Writer
read() {
wait(mutex);
read_count++;
if (read_count == 1)
wait(block_write);

signal(mutex);

do the reading

wait(mutex);
read_count--;
if (read_count == 0)
signal(block_write);

signal(mutex);
}

Reader
int read_count = 0;
semaphore mutex = 1;
semaphore block_write = 1;

Initialization

wait until there 
are no readers 
or writers

are we the 
first reader?

are we the 
last reader?

wait until there 
are no writers

let a writer 
run

• When there’s a writer, where do readers block?
• Which reader runs first after a writer?
• If multiple readers, will they all run before a writer?
• Is this approach fair?



• Other synchronization primitives
♦ Why would we want more than just locks?

• Semaphores
♦ What is a semaphore?
♦ How can we use them?
♦ How can we implement them?

CSE 120 – Lecture 6 – Semaphores 35

Today’s Outline



• Use a queue to block waiters, guard on lock, and a count of waiters

• Similar to implementing a lock (check!) but we need to maintain the count

CSE 120 – Lecture 6 – Semaphores 36

Implementing Semaphores

struct semaphore {
int count = 1;
bool guard = False;
queue Q;

}

void wait(s) {
while (test_and_set(&s->guard));
if (s->count <= 0) {
put current thread on s->Q;
block current thread and

s->guard = False;
} 
s->count--;
s->guard = False;

}

void signal(s) {
while (test_and_set(&s->guard));
if (s->Q is empty)

s->count++;
else

move a waiting thread to the ready 
queue;
s->guard = False;

}



• Semaphores can be used to solve traditional synchronization problems
♦ For example: Producer-Consumer and Reader-Writer
♦ Enforce critical sections (mutual exclusion)
♦ Enable coordination between threads (scheduling)

• But they have some drawbacks:
♦ No coordination between the semaphore and the controlled data
♦ Used for both critical sections and coordination - this can be confusing!
♦ Sometimes hard to use and prone to bugs

• What can we do instead?
♦ Next week…

CSE 120 – Lecture 6 – Semaphores 37

Semaphore Summary



• Read chapters 30 and 32

CSE 120 – Lecture 6 – Semaphores 38

For next class…


