CSE 120
Principles of Operating Systems

Spring 2023
Lecture 6: Semaphores

Amy Ousterhout

Administrivia

* Project 1
+ Extended, due 5/2

* Homework #2
 Thanks for the #FinAid feedback

CSE 120 — Lecture 6 — Semaphores

Synchronization

* Interleaved executions and shared resources can lead to race conditions

+ Results depend on the timing execution of the code
» Critical sections

+ Sections of code in which only one thread may be executing at a given time
* Locks can solve this problem by providing mutual exclusion

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance - amount;
put_balance(account, balance);
release(lock);
return balance;

CSE 120 — Lecture 6 — Semaphores

}

critical
section

Implementing Locks

* Use a queue to block waiters

* Leave interrupts enabled within the critical section
« Use disabling interrupts or spinning only to protect the critical sections within

acquire/release

Implementing a lock by disabling interrupts

acquire(lock) } Interrupts Disabled

Critical section } Interrupts Enabled

release(lock) + Interrupts Disabled

Implementing a lock with test_and_set

acquire(lock)
Critical section

release(lock)

CSE 120 — Lecture 6 — Semaphores

} Spin lock A

_ Interrupts
Enabled

} Spin lock

Synchronization Primitives

* Locks are useful for implementing critical sections
» But locks have limited semantics
+ Just provide mutual exclusion
« Mutual exclusion does not solve all synchronization problems
« Sometimes we want other semantics, for example:
+ Wait for shared resources to become available

+ Allow multiple threads to generate different resources
+ Use certain conditions to decide when to enter a critical section

CSE 120 — Lecture 6 — Semaphores

Today’s Outline

« Other synchronization primitives

+ Why would we want more than just locks?
* Semaphores

+ What is a semaphore?

+ How can we use them?

+ How can we implement them?

CSE 120 — Lecture 6 — Semaphores

Producer-Consumer Problem

» Also known as the Bounded Buffer problem
* Producer: generates resources

. Consumer
« Consumer: uses up resources takes items
« Buffers: fixed size, used to hold resources
)] Producer >
between production and consumption adds items

CSE 120 — Lecture 6 — Semaphores 7

Producer-Consumer Examples

. counter
» Real-life example: restaurant space s
. Chc?fs produce plzza. o g1 . Waiters
+ Waiters “consume” pizza to deliver it to ~ deliver
customers @ pizzas to
o @ tables
+ Limited counter space to hold food Chefsadd .
. pizzas
* Operating system examples
+ Memory pages

+ Disk blocks
+ 1/O

CSE 120 — Lecture 6 — Semaphores 8

Producer-Consumer Problem

* Producer and consumer can execute at different

rates
o]] o Consumer
+ No serialization of one behind the other takes items
+ There can be multiple producers and multiple
consumers Producer .

adds items

+ Tasks are independent
+ The buffer allows each to run without explicit handoff
« Synchronization: ensuring concurrent producers
and consumers access the buffer in a correct way
+ What is a “correct way”?

CSE 120 — Lecture 6 — Semaphores 9

Producer-Consumer

Producer

while (1) {
produce an item

count++;

}

insert item in buffer - - -

count=3

* What's wrong with this naive solution?

CSE 120 — Lecture 6 — Semaphores

Consumer

while (1) {

“['> remove item from buffer

count--;

consume an item

}

10

Producer-Consumer with Locks

Producer Consumer

while (1) { while (1) {
produce an item

T~ acquire(lock);
acquire(lock); " T[> remove item from buffer
insert item in buffer ---.1__ count--;
count++; | T [S release(lock);
release(lock);

consume an item

count=3 }

» Use alock to protect the count variable and the buffer
* Does this work?

CSE 120 — Lecture 6 — Semaphores

Limitations of Locks

» Locks provide mutual exclusion

+ Only one thread can be in the critical section at one time
» Locks do not provide ordering or sequencing

+ How does the producer know when to stop producing?

+ How does the consumer know when it can consume?

CSE 120 — Lecture 6 — Semaphores

12

Producer-Consumer with Locks and Sleep/Wake

Producer Consumer
while (1) { while (1) {
produce an item if (count == @)
if (count == N) - sleep();
sleep(); \‘\~\ acquire(lock);
acquire(lock); "> remove item from buffer
insert item in buffer — -~ (-~~~ """~~~ 77 > count--;
count++; release(lock);
release(lock); if (count == N-1)
if (count == 1) wakeup (producer)
wakeup (consumer) consume an item
} count = 2 }
N=8

» Use sleep/wakeup to manage buffer capacity
* Does this work?

CSE 120 — Lecture 6 — Semaphores 13

Producer-Consumer with Locks and Sleep/Wake

Producer Consumer
while (1) { Context while (1) {
produce an item <«-----____________ [| §Vyi_tc_f1 — if (count == Q)
if (count == N T sleep();
() . [sleep();
sleep(); - acquire(lock);
acquire(lock); /,/' remove item from buffer
insert item in buffer -~ count--;
count++; release(lock);
release(lock); if (count == N-1)
if (count == 1) wakeup (producer)
wakeup (consumer) consume an item
} count =8 }
N=8

« Both sleep and never wake up
* Lost the wakeup — is there any way to “remember” it?

CSE 120 — Lecture 6 — Semaphores 14

Limitations of Locks and Sleep/\Wake

* Need a way to count or remember the number of events
* Need more powerful synchronization mechanisms

+ Semaphores

+ Condition variables

+ Monitors

+ Etc.

CSE 120 — Lecture 6 — Semaphores

15

Today’s Outline

« Other synchronization primitives

+ Why would we want more than just locks?
 Semaphores

+ What is a semaphore?

+ How can we use them?

+ How can we implement them?

CSE 120 — Lecture 6 — Semaphores

16

Semaphores

« A synchronization variable that takes on non-negative integer values
+ Invented by Edsger Dijkstra in the mid 60’s

» Semaphores support two operations:

+ wait(): an atomic operation that waits for the semaphore to become greater than
0, then decrements it by 1
» Also P () after the Dutch word for “try to reduce”

+ signal():an atomic operation that increments the semaphore by 1
» Also V() after the Dutch word for increment

+ Initialize the semaphore to some value
+ Cannot read the semaphore’s value directly

CSE 120 — Lecture 6 — Semaphores 17

Semaphores

* Spinning version

wait(s) {
while (s <= 9)
5
S--5

}

* Blocking version

wait(s) {

if (s <= 0)
sleep();
S--5

}

signal(s) {
S++;

}

signal(s) {
if (queued thread)
wakeup();
S++;

}

CSE 120 — Lecture 6 — Semaphores

executed
atomically!

18

Blocking Semaphores

« Each semaphore is associated with a queue of waiting threads
« Whenwait() is called by a thread:
+ If semaphore is open (positive), thread continues
+ If semaphore is closed (non-positive), thread blocks on queue

« The signal() opens the semaphore:
+ If athread is waiting on the queue, the thread is unblocked

+ If no threads are waiting on the queue, the signal is remembered for the next

thread
» signal() has “history”
» The “history” is a counter

wait(s) {

if (s <= 0)
sleep();
S--5

}

CSE 120 — Lecture 6 — Semaphores

signal(s) {
if (queued thread)
wakeup();
S++;

}

19

Semaphore Types

« Semaphores come in two types
* Binary semaphore
+ Represents single access to a resource
+ Guarantees mutual exclusion to a critical section
« Counting semaphore
+ Represents a resource with many units available
+ Multiple threads can pass the semaphore at once
+ Number of threads determined by the semaphore “count”

« Binary has count = 1, counting has count = N

CSE 120 — Lecture 6 — Semaphores

20

Semaphore Example: Binary Semaphore

« What happens if initially s = 1 and three threads want to execute:

+ Thread 1: [Wai€(), -5 sighal ()]
+ Thread 2: [Wai€(), -5 signal ()
+ Thread 3: [Wait()s s signal ()"

wait(s) { signal(s) {
while (s <= 0) S++;
; }
s--5
}

CSE 120 — Lecture 6 — Semaphores

Semaphore Example: Binary Semaphore

« Execution, starting with s = 1:
+ Thread 1: [Wait(), =, signal()]

. Thread 2: wait() ., signal()
. Thread 3: wait() ., signal()

« The semaphore behaves like a lock!

wait(s) { signal(s) {
while (s <= 0) S++;
; }
s--5
}

CSE 120 — Lecture 6 — Semaphores

Semaphore Example: Counting Semaphore

« What happens if initially s = 2 and three threads want to execute:

+ Thread 1: [Wai€(), -5 sighal ()]
+ Thread 2: [Wai€(), -5 signal ()
+ Thread 3: [Wait()s s signal ()"

wait(s) { signal(s) {
while (s <= 0) S++;
; }
s--5
}

CSE 120 — Lecture 6 — Semaphores

Semaphore Example: Counting Semaphore

« Execution, starting with s = 2:
+ Thread 1: [Wait(), =, signal()’

+ Thread 2: [wait(), =, signal()’
. Thread 3: wait() ., signal()

* Multiple threads can run at once

wait(s) { signal(s) {
while (s <= 0) S++;
; }
s--5
}

CSE 120 — Lecture 6 — Semaphores

Benefits of Semaphores over Locks

« Semaphores have a value, enabling more semantics:

+ When at most one, can be used for mutual exclusion (only 1 thread in a critical
section)

+ When greater than 1, can allow multiple threads to access resources
* Two use cases:

+ Mutual exclusion — only 1 thread accessing a resource at a time

+ Event sequencing — permit threads to wait for certain things to happen

CSE 120 — Lecture 6 — Semaphores

25

Today’s Outline

« Other synchronization primitives

+ Why would we want more than just locks?
* Semaphores

+ What is a semaphore?

+ How can we use them?

+ How can we implement them?

CSE 120 — Lecture 6 — Semaphores

26

Producer-Consumer with Semaphores

 signal(s) increments s
+ “just produced an item”
+ s value = how many items have been produced

* wait(s) will return without waiting only if s > 0

+ “wait until there is at least one item and then consume one item”
« What resources are we producing/consuming?

+ Items and empty spaces

CSE 120 — Lecture 6 — Semaphores

27

Producer-Consumer with Semaphores

» Two constraints:
+ Consumer must wait for the producer to produce items
+ Producer must wait for the consumer to empty spaces

» Use a separate semaphore for each constraint:
+ full count = 0
+ empty count = N

full count =3
empty count =5

CSE 120 — Lecture 6 — Semaphores 28

Producer-Consumer with Semaphores

Producer

while (1) {

produce an item

Consumer

while (1) {

wait(full count)

wait(empty_count)

“['> remove item from buffer

insert item in buffer — -~ (-~~~ """~~~ 77 > count--;

count++;

signal(empty_count)

signal(full_ count)

} consume an item

count =2 }

N=8
* Initialization: full_count = 0, empty_count = N
* Does this work?

CSE 120 — Lecture 6 — Semaphores

Producer-Consumer with Semaphores

» Three constraints:
+ Consumer must wait for the producer to produce items
+ Producer must wait for the consumer to empty spaces
+ Only one thread can manipulate the buffer at once

» Use a separate semaphore for the first two constraints:
+ full count = 0
+ empty count = N

* And a lock or semaphore for the third

full count =3
empty count =5

CSE 120 — Lecture 6 — Semaphores 30

Producer-Consumer with Semaphores

Producer

while (1) {

produce an item
wait(empty_count)

acquire(lock);

insert item in buffer -~

count++;
release(lock);
signal(full_ count)

Does this work?

Yes!

count =2
N=8

CSE 120 — Lecture 6 — Semaphores

Consumer

while (1) {
wait(full count)

acquire(lock);

"> remove item from buffer
count--;

release(lock);
signal(empty_count)

consume an item

31

Readers-Writers Problem

An object is shared among several threads
Some threads only read the object, others only write it
We can allow multiple readers but only one writer

Used with many data objects
+ Bank account example
+ Linked list, tree, ...

CSE 120 — Lecture 6 — Semaphores

32

Readers-Writers with Semaphores

« Constraints:

+ Writers can only proceed if there are no readers or writers

+ Readers can only proceed if there are no writers
* How can we use semaphores to implement this protocol?
* Use three variables:

+ intread count: number of threads currently reading

+ semaphore mutex: lock to control access to read_count

+ semaphore block write: allows one writer or many readers

CSE 120 — Lecture 6 — Semaphores

33

Readers-Writers with Semaphores

Initialization Writer Reader
int read_count = 0; write() { read() { are we the
semaphore mutex = 1; wait(block_write); wait(mutex); /first reader?
semaphore block write = 1; read_count++;
wait until there / do the writing if (I:‘ead_count f= 1)
are no readers wait(block write);
or writers signal(block write); /;ignal(mutex);
}
do the reading
wait until there are we the
are no writers wait(mutex); last reader?
« When there’s a writer, where do readers block? read_count-]
if (read_count == 0)
* Which reader runs first after a writer? signal (hloci urite);
]) i signal(mutex); NG ot "
* If multiple readers, will they all run before a writer? } o awrer

|s this approach fair?
CSE 120 — Lecture 6 — Semaphores 34

Today’s Outline

« Other synchronization primitives

+ Why would we want more than just locks?
* Semaphores

+ What is a semaphore?

+ How can we use them?

+ How can we implement them?

CSE 120 — Lecture 6 — Semaphores

35

Implementing Semaphores

» Use a queue to block waiters, guard on lock, and a count of waiters

struct semaphore {
int count = 1;
bool guard = False;
queue Q;

}

void wait(s) {

while (test_and_set(&s->guard));

if (s->count <= 0) {
put current thread on s->Q;
block current thread and

s->guard = False;

}

s->count--;

s->guard = False;

}

void signal(s) {

while (test_and_set(&s->guard));

if (s->Q is empty)

s->count++;
else
move a waiting thread to the ready

queue;

s->guard = False;

}

« Similar to implementing a lock (check!) but we need to maintain the count

CSE 120 — Lecture 6 — Semaphores

36

Semaphore Summary

« Semaphores can be used to solve traditional synchronization problems
+ For example: Producer-Consumer and Reader-\Writer
+ Enforce critical sections (mutual exclusion)
+ Enable coordination between threads (scheduling)

« But they have some drawbacks:
+ No coordination between the semaphore and the controlled data
+ Used for both critical sections and coordination - this can be confusing!
+ Sometimes hard to use and prone to bugs
* What can we do instead?
+ Next week...

CSE 120 — Lecture 6 — Semaphores

37

For next class...

* Read chapters 30 and 32

CSE 120 — Lecture 6 — Semaphores

38

