CSE 207B:
Applied Cryptography

Nadia Heninger
UCSD

Spring 2022 Lecture 11
Announcements

1. HW 5 is due Tuesday!

2. HW 6 is online!
Last time:
• RSA

This time:
• Attacks on RSA
• CCA security
Reminder: Textbook RSA Encryption

• Key Generation:
 1. \(N = pq \)
 2. Choose \(e \) s.t. \(\gcd(e, \phi(N)) = 1 \)
 3. \(d = e^{-1} \mod \phi(N) \)
 4. \(pk = (N, e), \ sk = (N, d). \)

• Encryption: \(c = m^e \mod N \)

• Decryption: \(m = c^d \mod N \)
Common moduli, different exponents

If $pk_1 = (e_1, N)$ and $pk_2 = (e_2, N)$

Factorization of N reveals $d = e^{-1} \mod (p - 1)(q - 1)$ for any e.
RSA Key Generation Vulnerabilities

Common moduli, different exponent and encryption

Let $pk_1 = (e_1, N)$ and $pk_2 = (e_2, N)$.

Encrypt the same m to both keys above:

$$c_1 = m^{e_1} \mod N \quad c_2 = m^{e_2} \mod N$$

If $\gcd(e_1, e_2) = 1$ compute $ae_1 + be_2 = 1$

$$c_1^a c_2^b = m^{e_1a} m^{e_2b} = m \mod N$$
RSA is homomorphic under multiplication

If we have a ciphertext $c = m^e \mod N$, can forge encryption of mr by computing

$$ cr^e \mod N = m^e r^e \mod N = (mr)^e \mod N $$

Implications:

• Positive use: blinding. Can blind ciphertexts before decryption to try to prevent side-channel attacks, or blind signatures before signing. (More later.)

• Negative use: Chosen ciphertext attacks.
Chosen Ciphertext Attack Game for Public-Key Encryption

Definition

(Enc, Dec) is CCA-secure if
\[| \Pr[A = 1|b = 0] - \Pr[A = 1|b = 1] | \text{ is negligible.} \]
Chosen ciphertext attack on textbook RSA

1. Input challenge ciphertext $c = m^e \mod N$.

2. Submit ciphertext $c' = r^e c \mod N$ for decryption.

3. Receive message $m' = rm$.

4. Original message is $m' r^{-1} \mod N = m$.
CCA-Secure RSA encryption

Our hybrid RSA encryption from last lecture is also CCA secure.

- **Key Generation:**
 1. Generate primes \(p, q \); \(N = pq \)
 2. Choose odd \(e \) s.t. \(\gcd(e, \phi(N)) = 1 \)
 3. \(d = e^{-1} \mod \phi(N) \)
 4. \(pk = (N, e), sk = (N, d) \).

- **Encryption:** Choose random \(x, y = x^e \mod N \); \(k = H(x) \);
 \(c = \text{SymEnc}_k(m) \). Send \((y, c)\).

- **Decryption:** Input \((y, c)\). \(x = y^d \mod N \); \(k = H(x) \);
 \(m = \text{SymDec}_k(c) \)
CCA-Secure RSA encryption

Our hybrid RSA encryption from last lecture is also CCA secure.

- **Key Generation:**
 1. Generate primes p, q; $N = pq$
 2. Choose odd e s.t. $\gcd(e, \phi(N)) = 1$
 3. $d = e^{-1} \mod \phi(N)$
 4. $pk = (N, e)$, $sk = (N, d)$.

- **Encryption:** Choose random x, $y = x^e \mod N$; $k = H(x)$;
 $c = \text{SymEnc}_k(m)$. Send (y, c).

- **Decryption:** Input (y, c). $x = y^d \mod N$; $k = H(x)$;
 $m = \text{SymDec}_k(c)$

Unfortunately, nobody actually uses this in practice.
RSA Padding Schemes

To protect against RSA malleability, RSA is universally used with a padding scheme in practice.

Instead of $\text{Enc}_{pk}(m) = m^e \mod N$, we define:

- $\text{Enc}_{pk}(m) = (\text{pad}(m))^e \mod N$
- $\text{Dec}_{sk}(m)$:
 1. Compute $p = c^d \mod N$.
 2. If p has correct padding format, return unpad(p).
 3. Else return “failure”.

You have seen this result in problems before.
RSA Padding Schemes

To protect against RSA malleability, RSA is universally used with a padding scheme in practice.

Instead of $\text{Enc}_{pk}(m) = m^e \mod N$, we define:

- $\text{Enc}_{pk}(m) = (\text{pad}(m))^e \mod N$
- $\text{Dec}_{sk}(m)$:
 1. Compute $p = c^d \mod N$.
 2. If p has correct padding format, return $\text{unpad}(p)$.
 3. Else return “failure”.

You have seen this result in problems before.
PKCS #1 v. 1.5 padding

PKCS #1 v. 1.5 padding is the most common padding scheme for RSA in practice.

Encryption:

\[m = 00 \ 02 \ [\text{random padding string}] \ 00 \ [\text{data}] \]

Signatures:

\[m = 00 \ 01 \ FF \ldots \ FF \ 00 \ [\text{data}] \]

To decrypt, implementation checks padding format:

- First two bytes correct.
- Padding string contains no null bytes.
- Presence of null byte.
- data is typically symmetric key data.
Bleichenbacher PKCS #1 v. 1.5 chosen ciphertext attack
[Bleichenbacher 1998]

\[m = 00 \ 02 \ [\text{random padding string}] \ 00 \ [\text{data}] \]

Attack setup:

• Attacker has a valid ciphertext \(c \) which is an encryption of a 48-byte SSL "premaster secret".
• Victim is a SSL 3.0 server with the private key.
Bleichenbacher PKCS #1 v. 1.5 chosen ciphertext attack
[Bleichenbacher 1998]

\[m = 00 \ 02 \ [\text{random padding string}] \ 00 \ [\text{data}] \]

Attack setup:

- Attacker has a valid ciphertext \(c \) which is an encryption of a 48-byte SSL “premaster secret”.
- Victim is a SSL 3.0 server with the private key.

1. Attacker queries server with candidates \(cr^e \mod N \).

2.

\[
\text{server} \begin{cases}
\text{aborts if padding incorrect} \\
\text{continues if padding correct}
\end{cases}
\]

3. Server is padding oracle that leaks information about plaintext.

With a few million queries can decrypt a 2048-bit RSA ciphertext.
TLS countermeasures against Bleichenbacher attack

TLS 1.0–1.2 countermeasure:

• If padding incorrect, server generates fake plaintext and continues connection with that fake plaintext.
• Since client doesn’t know secret, connection will fail later.

2016: DROWN Attack
• Since servers use the same RSA keys with old versions of SSL/TLS, attacker can mount Bleichenbacher attack against servers supporting SSL 2.0 to decrypt a TLS ciphertext.

TLS 1.3 countermeasure: Eliminate RSA key exchange entirely.
TLS countermeasures against Bleichenbacher attack

TLS 1.0–1.2 countermeasure:

- If padding incorrect, server generates fake plaintext and continues connection with that fake plaintext.
- Since client doesn’t know secret, connection will fail later.

Q: Why didn’t they use a CCA-secure padding scheme?
A: Fears about backwards compatibility.
TLS countermeasures against Bleichenbacher attack

TLS 1.0–1.2 countermeasure:

- If padding incorrect, server generates fake plaintext and continues connection with that fake plaintext.
- Since client doesn’t know secret, connection will fail later.

Q: Why didn’t they use a CCA-secure padding scheme?
A: Fears about backwards compatibility.

2016: DROWN Attack

- Since servers use the same RSA keys with old versions of SSL/TLS, attacker can mount Bleichenbacher attack against servers supporting SSL 2.0 to decrypt a TLS ciphertext.

TLS 1.3 countermeasure: Eliminate RSA key exchange entirely.
OAEP: CCA-secure RSA padding

[Bellare Rogaway 1994], [Fujisaki et al.]

Uses hash functions H, W, optional associated data d.

Theorem

OAEP padding is CCA-secure in the random oracle model assuming that RSA is “partially one-way”.

TLS, SSH, IPsec, etc. all default to PKCS#1 v. 1.5 padding.
Elementary factoring algorithms: Trial division

Input: $N \in \mathbb{Z}$
Output: $p, q \in \mathbb{Z}$ s.t. $pq = N$

Trial division:
For $i \leq \sqrt{N}$ check if $i \mid N$.
Elementary factoring algorithms: Pollard rho

Input: \(N \in \mathbb{Z} \)
Output: \(p, q \in \mathbb{Z} \) s.t. \(pq = N \)

Pollard rho:
Take a random walk mod \(N \), hope to find a cycle modulo \(p \mid N \).

Problem: Want a collision modulo \(p \), but we don’t know \(p \)!
Solution: \(a_i \equiv a_j \mod p \implies p \mid \gcd(a_i - a_j, N) \)
Elementary factoring algorithms: Pollard rho

Input: \(N \in \mathbb{Z} \)

Output: \(p, q \in \mathbb{Z} \) s.t. \(pq = N \)

Pollard rho:
Take a random walk mod \(N \), hope to find a cycle modulo \(p \mid N \).

Problem: Want a collision modulo \(p \), but we don’t know \(p \)!

Solution: \(a_i \equiv a_j \mod p \implies p \mid \gcd(a_i - a_j, N) \)

Try #1: Generate \(\sqrt{p} = O(N^{1/4}) \) elements \(a_i \).
Check \(\gcd(a_i - a_j, N) \). Problem: \(O(\sqrt{N}) \) time.
Elementary factoring algorithms: Pollard rho

Input: $N \in \mathbb{Z}$
Output: $p, q \in \mathbb{Z}$ s.t. $pq = N$

Pollard rho:
Take a random walk mod N, hope to find a cycle modulo $p | N$.

Try #2: Pseudorandom walk.
Define $f(x) = x^2 + c \mod N$, our pseudorandom function.

1. Choose random starting point s, constant c. $x_1 = x_2 = s$
2. Iterate walk: $x_1 = f(x_1), x_2 = f(f(x_2))$, compute

 $g = \gcd(a_1 - a_2, N)$.

 If $g = N$ start over. If $g \neq 1$ return g.

If f is sufficiently random, expect collision after $O(\sqrt{p})$ steps. N must have a factor p of size at most $O(\sqrt{N})$.
Elementary factoring algorithms: Pollard $p - 1$

Input: $N \in \mathbb{Z}$
Output: $p, q \in \mathbb{Z}$ s.t. $pq = N$

Recall Fermat’s little theorem: $a^{p-1} \equiv 1 \mod p$.

1. Choose random a.
2. Compute $M(k) = \text{lcm}(1 \ldots k) = \prod_i p_i^{e_i}$, $p_i^{e_i} < k$
3. Compute $b = a^{M(k)} - 1 \mod N$.
4. Compute $\gcd(b, N) = g$.
5. If $g \neq 1$ or N return g.

Factors N if $p - 1 \mid M(k) \implies p - 1$ has all small factors.

Countermeasure: Choose p so that $p - 1$ has some big prime factors.
Advanced factoring algorithms: Number field sieve

Running time: $O\left(\exp\left(c (\log N)^{1/3} (\log \log N)^{2/3}\right)\right)$

Current record: RSA-250, 829 bits (February 2020)
RSA and GCDs

Public Key
\((N = pq, e)\)

Private Key
\((p, q, d \equiv e^{-1} \mod (p - 1)(q - 1))\)
RSA and GCDs

Public Key
\((N = pq, e)\)

Private Key
\((p, q, d \equiv e^{-1} \mod (p - 1)(q - 1))\)

If two RSA moduli share a common factor,

\(N_1 = pq_1 \quad N_2 = pq_2\)

Time to factor 829-bit RSA modulus:
2700 core-years [Boudot et al. 2020]

Time to calculate GCD for 1024-bit RSA moduli:
15 \(\mu\)s
RSA and GCDs

Public Key
(N = pq, e)

Private Key
(p, q, d ≡ e⁻¹ mod (p − 1)(q − 1))

If two RSA moduli share a common factor,

\[N_1 = pq_1 \quad \text{and} \quad N_2 = pq_2 \]

\[\gcd(N_1, N_2) = p \]

You can factor both keys with GCD algorithm.

Time to factor
829-bit RSA modulus:
2700 core-years

[Boudot et al. 2020]

Time to calculate GCD
for 1024-bit RSA moduli:
15 µs
Naively computing pairwise GCDs

Euclid’s algorithm $\text{gcd}(a, b)$

\[
\begin{align*}
\text{if } b &= 0: \\
& \quad \text{return } a \\
\text{else:} \\
& \quad \text{return } \text{gcd}(b, a \mod b)
\end{align*}
\]

a, b have n bits $\rightarrow O(n^2)$ time.

"Fast multiplication and its applications" Bernstein 2008
Naively computing pairwise GCDs

Euclid’s algorithm $\text{gcd}(a, b)$

```python
if b == 0:
    return a
else:
    return $\text{gcd}(b, a \mod b)$
```

a, b have n bits $\rightarrow O(n^2)$ time.
Naively computing pairwise GCDs

Euclid’s algorithm \(\text{gcd}(a, b) \)

\[
\begin{align*}
\text{if } b &= 0: \\
\quad \text{return } a \\
\text{else:} & \\
\quad \text{return } \text{gcd}(b, a \mod b)
\end{align*}
\]

\(a, b \) have \(n \) bits \(\rightarrow O(n^2) \) time.

Use fast integer arithmetic for \(O(n(lg n)^2 \ lg \ lg n) \) time.

“Fast multiplication and its applications” Bernstein 2008
Naively computing pairwise GCDs

Euclid’s algorithm \(\text{gcd}(a, b) \)

\[
\begin{align*}
\text{if } b = 0: \\
\quad \text{return } a \\
\text{else:} \\
\quad \text{return } \text{gcd}(b, a \mod b)
\end{align*}
\]

\(a, b \) have \(n \) bits \(\rightarrow O(n^2) \) time.

Use fast integer arithmetic for \(O(n(\lg n)^2 \lg \lg n) \) time.

“Fast multiplication and its applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs \((N_i, N_j)\):

\[
\begin{align*}
\text{if } \text{gcd}(N_i, N_j) \neq 1: \\
\quad \text{add } (N_i, N_j) \text{ to list}
\end{align*}
\]
Naively computing pairwise GCDs

Euclid’s algorithm \(\text{gcd}(a, b) \)

\[
\begin{align*}
\text{if } b &= 0: \\
\quad \text{return } a \\
\text{else:} \\
\quad \text{return } \text{gcd}(b, a \mod b)
\end{align*}
\]

\(a, b \) have \(n \) bits \(\rightarrow O(n^2) \) time.

Use fast integer arithmetic for \(O(n(\lg n)^2 \lg \lg n) \) time.

“Fast multiplication and its applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs \((N_i, N_j)\):

\[
\begin{align*}
\text{if } \text{gcd}(N_i, N_j) &\neq 1: \\
\text{add } (N_i, N_j) \text{ to list}
\end{align*}
\]

\[15 \mu s \times \left(\frac{14 \times 10^6}{2}\right) \text{ pairs} \approx 1100 \text{ years}\]
Naively computing pairwise GCDs

Euclid’s algorithm \(\text{gcd}(a, b) \)

\[
\begin{align*}
\text{if } b &= 0: \\
\quad &\text{return } a \\
\text{else:} \\
\quad &\text{return } \text{gcd}(b, a \mod b)
\end{align*}
\]

\(a, b \) have \(n \) bits \(\rightarrow O(n^2) \) time.

Use fast integer arithmetic for \(O(n(\lg n)^2 \lg \lg n) \) time.

“Fast multiplication and its applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs \((N_i, N_j)\):

\[
\begin{align*}
\text{if } \text{gcd}(N_i, N_j) &\neq 1: \\
\quad &\text{add } (N_i, N_j) \text{ to list}
\end{align*}
\]

\[15 \mu s \times \left(\frac{14 \times 10^6}{2} \right) \text{ pairs} \approx 1100 \text{ years}\]
Efficiently computing pairwise GCDs

An efficient algorithm due to [Bernstein 2004].

\[N_1 \times N_2 \times N_3 \times N_4 \mod N_2 \times N_1 \times N_3 \times N_4 \mod N_2 \times N_2 \times N_3 \times N_4 \mod N_2 \times N_2 \times N_2 \times N_4 \mod N_2 \times N_2 \times N_2 \times N_2 \mod N_2 \times N_2 \times N_2 \times N_2 \mod N_2 \times N_3 \times N_2 \times N_4 \mod N_2 \times N_2 \times N_3 \times N_4 \mod N_2 \times N_2 \times N_2 \times N_4 \mod N_2 \times N_3 \times N_2 \times N_4 \mod N_2 \times N_3 \times N_2 \times N_4 \mod N_4 \]

\[\text{gcd}(\cdot, N_1) \text{ gcd}(\cdot, N_2) \text{ gcd}(\cdot, N_3) \text{ gcd}(\cdot, N_4) \]

\[O(mn \text{ polylog}(mn)) \text{ time for } m n\text{-bit integers, a few hours for internet-wide scan data.} \]
Should we expect to find prime collisions in the wild?

Experiment: Compute GCD of each pair of M RSA moduli randomly chosen from P primes.

What *should* happen? **Nothing.**
Should we expect to find prime collisions in the wild?

Experiment: Compute GCD of each pair of M RSA moduli randomly chosen from P primes.

What should happen? Nothing.

Prime Number Theorem: $\sim 10^{150}$ 512-bit primes

Birthday bound: $Pr[\text{nontrivial gcd}] \approx 1 - e^{-2M^2/P}$

![Graph showing the probability of nontrivial gcd against the number of moduli.](image)
What happened when we GCDed RSA keys in 2012?

Computed private keys for

- 64,081 HTTPS servers (0.50%).
- 2,459 SSH servers (0.03%).
- 2 PGP users (and a few hundred invalid keys).
What happened when we GCDed RSA keys in 2012?

Computed private keys for

- 64,081 HTTPS servers (0.50%).
- 2,459 SSH servers (0.03%).
- 2 PGP users (and a few hundred invalid keys).

What has happened since?

- 103 Taiwanese citizen smart card keys [Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren 2013]
- 90 export-grade HTTPS keys. [Albrecht, Papini, Paterson, Villanueva-Polanco 2015]
- 313,330 HTTPS, SSH, IMAPS, POP3S, SMTPS keys [Hastings Fried Heninger 2016]
- 3,337 Tor relay RSA keys. [Kadianakis, Roberts, Roberts, Winter 2017]
Widespread RNG failures on low resource devices

We accidentally found *multiple independent cascading PRNG failures*.

Factor #1: Weak keys generated by low resource devices (> 50 manufacturers).

1. Linux PRNG inputs: keyboard, mouse, disk
2. OpenSSL inputs: time, pid, OS PRNG
3. Headless or embedded devices lack these entropy sources.

Factor #2: Boot-time entropy hole on Linux PRNG

- Devices automatically generated keys on first boot.
- Linux PRNG had not yet been seeded when queried by OpenSSL.
- Fixed since July 2012.
2022 Linux PRNG Updates

“Random number generator enhancements for Linux 5.17 and 5.18”
https://www.zx2c4.com/projects/linux-rng-5.17-5.18/

• “the RNG can seed itself using cycle counter jitter in a second or so if it hasn’t already been seeded by other entropy sources”
• “apparently we cannot yet unify /dev/random and /dev/urandom, because the day after this change made it to mainline breakage was detected on arm, m68k, microblaze, sparc32, and xtensa”
• “swapping out SHA-1 for BLAKE2s”
• “is ‘premature next’ a real world rng concern, or just an academic exercise?”
https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/
• Widespread RSA key generation and random number generation vulnerabilities were hiding in plain sight for years.

• Patching rates are low to nonexistent for networked devices.

• Gaps between theory and practice.