Feature Extraction
(Part 1)

Image Processing
CSE 166
Lecture 17
Announcements

• Assignment 7 is due Jun 1, 11:59 PM

• Reading
 – Chapter 12: Feature extraction
 • Sections 12.1, 12.4, and 12.6
Feature extraction

• Feature extraction is comprised of
 – Feature detection
 – Feature description

 • A feature descriptor is
 – Invariant with respect to a set of transformations if its value remains unchanged after the application of any transformation from the family
 – Covariant with respect to a set of transformations if applying any transformation from the set produces the same result in the descriptor
Features

- Features
 - Local (a member of a set)
 - Global (the entire set)

- Categories
 - Boundaries
 - Regions
 - Whole images
Region feature descriptors

- Basic descriptors
 - Compactness
 - Circularity
 - Effective diameter
 - Diameter of circle with same area
 - Eccentricity (of an approximating ellipse)

FIGURE 12.21
(a) An ellipse in standard form.
(b) An ellipse approximating a region in arbitrary orientation.

\[c^2 = a^2 - b^2 \]
Feature space

- \(n \)-dimensional feature vector
 - “Packaged” form of features
 - Example
 - Compactness, circularity, and eccentricity form a 3-vector
Texture as a region descriptor

- Statistical texture measures
 - Statistical moments
 - The n-th moment of z about the mean is
 \[
 \mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i)
 \]
 where the mean
 \[
 m = \sum_{i=0}^{L-1} z_i p(z_i)
 \]
 - $p(z_i)$ is the normalized histogram and L is the number of gray levels
 - The second, third, and fourth moments are the variance, skewness, and kurtosis, respectively
Texture as a region descriptor

• Statistical texture measures
 – Relative intensity smoothness
 \[R(z) = 1 - \frac{1}{1 + \sigma^2(z)} \]
 – Uniformity
 \[U(z) = \sum_{k=0}^{L-1} p^2(z_i) \]
 – Average entropy
 \[e(z) = -\sum_{k=0}^{L-1} p(z_i) \log_2(p(z_i)) \]
Statistical texture measures

Figure 12.29
The white squares mark, from left to right, smooth, coarse, and regular textures. These are optical microscope images of a superconductor, human cholesterol, and a microprocessor. (Courtesy of Dr. Michael W. Davidson, Florida State University.)

Table 12.2
Statistical texture measures for the subimages in Fig. 12.29.

<table>
<thead>
<tr>
<th>Texture</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>R (normalized)</th>
<th>3rd moment</th>
<th>Uniformity</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td>82.64</td>
<td>11.79</td>
<td>0.002</td>
<td>−0.105</td>
<td>0.026</td>
<td>5.434</td>
</tr>
<tr>
<td>Coarse</td>
<td>143.56</td>
<td>74.63</td>
<td>0.079</td>
<td>−0.151</td>
<td>0.005</td>
<td>7.783</td>
</tr>
<tr>
<td>Regular</td>
<td>99.72</td>
<td>33.73</td>
<td>0.017</td>
<td>0.750</td>
<td>0.013</td>
<td>6.674</td>
</tr>
</tbody>
</table>
Texture as a region descriptor

• Graylevel co-occurrence matrix
 – Let Q be an operator that defines the position of two pixels relative to each other in image f with number of gray levels L
 – Let G be a matrix whose element g_{ij} is the number of times that pixel pairs with intensities z_i and z_j occur in image f in the position specified by Q
 • Probability a pair of points satisfy Q is

$$p_{ij} = \frac{g_{ij}}{n}$$

where n is the number of pixels pairs that satisfy Q (i.e., n is the sum of the elements in Q)
Graylevel co-occurrence matrix

- Number of gray levels $L = 8$
- Position operator Q is “one pixel immediately to the right”
Graylevel co-occurrence matrix

Images

Graylevel co-occurrence matrices
Texture as a region descriptor

- Graylevel co-occurrence matrix-based feature descriptors

TABLE 12.3
Descriptors used for characterizing co-occurrence matrices of size \(K \times K \). The term \(p_{ij} \) is the \(ij \)-th term of \(G \) divided by the sum of the elements of \(G \).

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Explanation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum probability</td>
<td>Measures the strongest response of (G). The range of values is ([0, 1]).</td>
<td>(\max_{i,j}(p_{ij}))</td>
</tr>
<tr>
<td>Correlation</td>
<td>A measure of how correlated a pixel is to its neighbor over the entire image. The range of values is ([-1, 1]) corresponding to perfect positive and perfect negative correlations. This measure is not defined if either standard deviation is zero.</td>
<td>(\sum_{i=1}^{K} \sum_{j=1}^{K} \frac{(i - m_r)(j - m_c)p_{ij}}{\sigma_r \sigma_c}) where (\sigma_r \neq 0) and (\sigma_c \neq 0)</td>
</tr>
<tr>
<td>Contrast</td>
<td>A measure of intensity contrast between a pixel and its neighbor over the entire image. The range of values is ([0, 1]) when (G) is constant.</td>
<td>(\sum_{i=1}^{K} \sum_{j=1}^{K} (i - j)^2 p_{ij})</td>
</tr>
<tr>
<td>Uniformity (also called Energy)</td>
<td>A measure of uniformity in the range ([0, 1]). Uniformity is 1 for a constant image.</td>
<td>(\sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij}^2)</td>
</tr>
<tr>
<td>Homogeneity</td>
<td>Measures the spatial closeness to the diagonal of the distribution of elements in (G). The range of values is ([0, 1]), with the maximum being achieved when (G) is a diagonal matrix.</td>
<td>(\sum_{i=1}^{K} \sum_{j=1}^{K} \frac{p_{ij}}{1 +</td>
</tr>
<tr>
<td>Entropy</td>
<td>Measures the randomness of the elements of (G). The entropy is 0 when all (p_{ij})'s are 0, and is maximum when the (p_{ij})'s are uniformly distributed. The maximum value is thus (2 \log_2 K).</td>
<td>(-\sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} \log_2 p_{ij})</td>
</tr>
</tbody>
</table>

\(m_r = \sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} \)

\(m_c = \sum_{j=1}^{K} \sum_{i=1}^{K} p_{ij} \)

\(\sigma_r^2 = \sum_{i=1}^{K} (i - m_r)^2 \sum_{j=1}^{K} p_{ij} \)

\(\sigma_c^2 = \sum_{j=1}^{K} (i - m_c)^2 \sum_{i=1}^{K} p_{ij} \)
Graylevel co-occurrence matrix-based feature descriptors

Table 12.4
Descriptors evaluated using the co-occurrence matrices displayed as images in Fig. 12.32.

<table>
<thead>
<tr>
<th>Normalized Co-occurrence Matrix</th>
<th>Maximum Probability</th>
<th>Correlation</th>
<th>Contrast</th>
<th>Uniformity</th>
<th>Homogeneity</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1/n_1</td>
<td>0.00006</td>
<td>-0.0005</td>
<td>10838</td>
<td>0.00002</td>
<td>0.0366</td>
<td>15.75</td>
</tr>
<tr>
<td>G_2/n_2</td>
<td>0.01500</td>
<td>0.9650</td>
<td>00570</td>
<td>0.01230</td>
<td>0.0824</td>
<td>06.43</td>
</tr>
<tr>
<td>G_3/n_3</td>
<td>0.06860</td>
<td>0.8798</td>
<td>01356</td>
<td>0.00480</td>
<td>0.2048</td>
<td>13.58</td>
</tr>
</tbody>
</table>
Whole-image features

• Feature descriptors applicable to entire images that are members of a large family of images

• Detection
 – Corner-like features
 – Regions
 • Could be described using the descriptors covered earlier
Detection of corner-like features

• Corner
 – A rapid change of direction in a curve
 – A highly effective feature
 • Distinctive
 • Reasonably invariant to viewpoint
Detection of corner-like features

• Examine a small window over an image
Detection of corner-like features

• For each window location, compute the spatial gradient matrix

\[
M = \begin{bmatrix}
\sum_s \sum_t f_x(s, t)^2 & \sum_s \sum_t f_x(s, t)f_y(s, t) \\
\sum_s \sum_t f_x(s, t)f_y(s, t) & \sum_s \sum_t f_y(s, t)^2
\end{bmatrix}
\]

where \(f_x \) is the gradient in the \(x \)-direction and \(f_y \) is the gradient in the \(y \)-direction

• Then, compute eigenvalues of spatial gradient matrix
Eigenvalues of spatial gradient matrix

Figure 12.46 (a)—(c) Noisy images and image patches (small squares) encompassing image regions similar in content to those in Fig. 12.45. (d)—(f) Plots of value pairs \((f_x, f_y)\) showing the characteristics of the eigenvalues of \(M\) that are useful for detecting the presence of a corner in an image patch.
Detection of corner-like features

- Harris-Stephens corner detector
 - Run a small window over an image and compute spatial gradient matrix \mathbf{M}
 - Approximate the minor eigenvalue of \mathbf{M} to compute measurement image R
 - Include sensitivity factor k
 \[
 R(x, y) = \det(\mathbf{M}) - k \text{Tr}^2(\mathbf{M})
 \]
 - Threshold measurement image R using global threshold T
 - Corner at coordinates corresponding to $R > T$
Harris-Stephens corner detector

Image + noise

$k = 0.04, T = 0.01$

$k = 0.1, T = 0.01$

$k = 0.1, T = 0.1$

$k = 0.04, T = 0.1$

$k = 0.04, T = 0.3$
Harris-Stephens corner detector

Image + more noise

\(k = 0.249 \)
\(T = 0.01 \)

\(k = 0.04 \)
\(T = 0.15 \)
Harris-Stephens corner detector

Image

$\begin{array}{ll}
\text{a} & k = 0.04, \ T = 0.01 \\
\text{b} & k = 0.249, \ T = 0.01 \\
\text{c} & k = 0.17, \ T = 0.05 \\
\text{d} & k = 0.04, \ T = 0.05 \\
\end{array}$
Harris-Stephens corner detector

![Image](image.png)

Image

Image rotated 5 degrees

$\begin{align*}
 k &= 0.04 \\
 T &= 0.07
\end{align*}$

Partial rotation invariance
Detection of corner-like features

• Shi-Tomasi corner detector
 – Run a small window over an image and compute spatial gradient matrix \mathbf{M}
 – Compute the minor eigenvalue of \mathbf{M} to compute measurement image R
 – Apply nonmaximal suppression to the measurement image R
 • Prevents corners from being too close to each other
 – Threshold resulting image R using global threshold T
 • Corner at coordinates corresponding to $R > T$
Next Lecture

- Feature extraction
- Reading
 - Chapter 12: Feature extraction
 - Section 12.7