CSE 166: Image Processing, Spring 2022 — Assignment 2

Instructor: Ben Ochoa

* Due On: Wednesday, April 13, 2022, 11:59 PM (Pacific Time).

Instructions
Please answer the questions below using Python in the attached Jupyter notebook and follow the
guidelines below:

e This assignment must be completed individually. For more details, please follow the
Academic Integrity Policy and Collaboration Policy on Canvas.

e This assignment contains both math and programming problems.
e All the solutions must be written in this Jupyter notebook.

e After finishing the assignment in the notebook, please export the notebook as a PDF and
submit both the notebook and the PDF (i.e. the .ipynb and the .pdf files) on Gradescope.
Please assign the pages of your PDF submission to the corresponding problems.

* You may use basic algebra packages (e.g. NumPy, SciPy, etc) but you are not allowed to use
the packages that directly solve the problems. Feel free to ask the instructor and the teaching
assistants if you are unsure about the packages to use.

 Itis highly recommended that you begin working on this assignment early.

Late Policy: Assignments submitted late will receive a 15% grade reduction for each 12 hours late
(i.e., 30% per day). Assignments will not be accepted 72 hours after the due date. If you require an
extension (for personal reasons only) to a due date, you must request one as far in advance as
possible. Extensions requested close to or after the due date will only be granted for clear
emergencies or clearly unforeseeable circumstances.

Problem 1: Textbook problems (10 points)
a) Problem 3.5 (2 points)

your answer here

b) Problem 3.7 (2 points)
your answer here

c) Problem 3.11a (1 point)
your answer here

d) Problem 3.12a (1 point)
your answer here

e) Problem 3.24 (1 point)
your answer here

f) Problem 3.29 (2 points)

your answer here

g) Problem 3.44 (1 point)

your answer here

Problem 2: Programming: Intensity transformations and

spatial filtering (30 points)

Part 1: Piecewise linear transformation (5 points)

e Complete the function piecewise_linear_transform which computes an intensity transformed
image for a given image and two additional parameters. The parameters are comprised of a
set of input intensity values and a corresponding set of output intensity values, where the first
intensity value is 0 and the last intensity value is 255 in both sets. The resulting intensity
values in the output image are calculated from a piecewise linear transformation determined
from the parameters. See Figure 3.10(a) in the textbook for an example of a piecewise linear
transformation function corresponding to a set of input and output intensity values.

e Call the function piecewise_linear_transform for the moon image with input intensities
{0, 100, 130, 255} and output intensities {0, 70, 200, 255} to calculate the intensity
transformed image. Display the resulting output.

 Briefly discuss the qualitative differences between the input and output images.

import numpy as np

import matplotlib.pyplot as plt
from skimage import data

import math

S w N -

Read and display image
img = data.moon()

S W N R

plt.imshow(img, cmap='gray')

<matplotlib.image.AxesImage at 0x7ff9ba37£850>
H

100

1 # function that transforms intensities of the image using piece-wise linear transfc

2 def piecewise linear transform(img, ip intensities, op intensities):

0 N o U W

11
12
13

R O W 00 N o Ul & W N -

=

nuon

img: input image (H,W)
ip intensities: input intensities (N,)
op_intensities: output intensities (N,)

returns:
tr img: resulting image after piecewise linear transform (H,W)

nuon

your code here

return tr img

Call piecewise linear transform function for the moon image with the given input
and output intensities. Display the transformed image.

ip intensities = np.array([0, 100, 130, 255])

op_intensities = np.array([0, 70, 220, 255])

tr img = piecewise linear transform(img, ip intensities, op intensities)

fig, ax = plt.subplots(1l,2, figsize=(10,10))
ax[0].imshow(img, cmap='gray')
ax[l].imshow(tr img, cmap='gray')

Briefly discuss the qualitative differences between the input and output images.

your answer here

Part 2: Histogram equalization (5 points)

e Complete the function histogram_equalization which calculates a histogram equalized image
corresponding to the given image. The function input is a grayscale image and the function
output is the histogram equalized image corresponding to the input image.

e Call the function histogram_equalization for the moon image and display the resulting output.

* Plot the histogram of the intensities of the input image and the histogram-equalized image
side-by-side

1 # Read and display the image along with its histogram of intensities

2 img = data.moon()

3

4 plt.imshow(img, cmap='gray')

PO T, R B N L mnm e~ MNeemn ~Taonn e~ - Ne.TLENYNECOITNNOLNANS

SNatploOLllp. Llldge . AXes lllldgye dl UX/1L4UDJ0VUVUolLyvu~

0

100

200

300

400

500

function that transforms the input image into histogram-equalized image
def histogram equalization(img):

img: input image

heq img: histogram-equalized image

1

2

3

4

5

6 returns:
7

8

9 # your code here
0

1

return heq img

nnn

Call histogram equalization for the moon image. Display the output

nnn

heqg img = histogram equalization(img)

fig, ax plt.subplots(1l,2, figsize=(10,10))
ax[0].imshow(img, cmap='gray')
ax[l].imshow(heq img, cmap='gray')

00 J O U b W N

nnn

plot the histogram of the intensities of the input image and the histogram-equalize

nnn

1
2
3 image side-by-side
4
5

your code here

Part 3: Sharpening using the second derivative (10 points)

1. Complete the function sharpen_image that calculates a sharpened image corresponding to a
given image. The function input is a grayscale image and the function output is the sharpened
image corresponding to the input image. The function must use the Laplacian filter (without

~

diagonal directions). Note that g(x, y) = f(x,y) — V* f(x, y), where f(x, y) is the input
image and g(x, y) is the output sharpened image. Filtering must be implemented without
using Python functions like scipy.ndimage.convolve.

2. Call the function sharpen_image for the checkerboard image. Display the input image and the
sharpened image, side by side.

3. Briefly discuss your results.

4. Optional: sharpen the image using the Laplacian filter with diagonal directions and briefly
discuss the qualitative differences between these results and those obtained using the filter
without diagonal directions.

Notes:

» While performing sharpening, the output pixels can have values outside the [0,255]. You can
handle this by working with np.int32 data type matrices.

e Clamp the output sharpened image such that all intensities less than zero is set to 0 and all
intensities greater than 255 is set to 255.

1 # function that sharpens the given image
2 def sharpen image(img):
3 mon

img: input image (H,W)

sh img: image after sharpening (H,W)

nuon

4
5
6 returns:
7
8
9

your code here
10
11 return sh img

Call the sharpen image function with the checkerboard image.
Display the images before and after sharpening.

img = data.checkerboard()

your code here

N oy Ok W N

Briefly discuss your results

your answer here

Part 4: Magnitude of gradient (10 points)

1. Complete the function gradient_magnitude that calculates the magnitude of gradient vector
image corresponding to a given image. The function input is a grayscale image and the
function output is the gradient magnitude image corresponding to the input image. The
function must use the Sobel approximation to the derivative. Filtering must be implemented
without using Python functions like scipy.ndimage.convolve.

2. Call the function gradient_magnitude with the camera image, and display the output.

Notes:

» While computing magnitude of gradient, the output pixels can have values outside the [0,255]
range and/or floating-point numbers. You can handle this by working with np.float32 data type
matrices.

» Scale (only) the output image such that zero is black and the maximum gradient magnitude
value in the image is white.

1 # function that computes the magnitude of gradient for the given image
2 def gradient magnitude(img):
3 mmon

img: input image (H,W)

4
5
6 returns:

7 mg _img: image after applying magnitude of gradient (H,W)
8 wan

9

your code here
10
11 return mg img

Call the gradient magnitude function with the camera image.
Display the resulting image.

img = data.camera()

your code here

~N oy OB W N

