CSE 140, Lecture 2
Combinational Logic

CK Cheng
CSE Dept.
UC San Diego

Combinational Logic Outlines

1. Introduction
 • Scope
 • Boolean Algebra (Review)
 • Definition
 • Duality
 • AND/OR Gates
 • Expressions vs Circuits
 • Handy Tools
 • DeMorgan's Theorem
 • Consensus Theorem
 • Shannon's Expansion

2. Specification

3. Synthesis
 • K-map

No memory
AND, OR, NOT logic + 0, 1 constant
Acyclic graph
Flow
Non sequential (Cycle)
1.1 Combinational Logic: Scope

- **Description**
 - **Language**: e.g. C Programming, Verilog, VHDL
 - **Boolean algebra**
 - **Truth table**: Powerful engineering tool

- **Design**
 - **Schematic Diagram**
 - Inputs, Gates, Nets, Outputs

- **Goal**
 - **Validity**: correctness, turnaround time
 - **Performance**: power, timing, cost
 - **Testability**: yield, diagnosis, robustness

Scope: Boolean algebra, switching algebra, logic

- **Boolean Algebra**: multiple-valued logic, i.e. each variable have multiple values.
- **Switching Algebra**: binary logic, i.e. each variable can be either 1 or 0.
- **Boolean Algebra ≠ Switching Algebra**

\[
f = a + b(c + d(e + f(g + h)))
\]
Scope: Boolean algebra, switching algebra, logic

- Boolean Algebra: multiple-valued logic, i.e. each variable have multiple values. **Boolean Algebra ≠ Switching Algebra**

Example: Set={0,A,B,1}, Operators & , + are defined in the following:

\[
\begin{array}{c|cccc}
\& & 0 & A & B & 1 \\
0 & 0 & 0 & 0 & 0 \\
A & 0 & A & 0 & A \\
B & 0 & 0 & B & B \\
1 & 0 & A & B & 1 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
+ & 0 & A & B & 1 \\
0 & 0 & A & B & 1 \\
A & A & A & 1 & 1 \\
B & B & 1 & B & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Scope: Switching Algebra (Binary Values)

- Typically consider only two discrete values:
 - 1’s and 0’s
 - 1, TRUE, HIGH
 - 0, FALSE, LOW

- 1 and 0 can be represented by specific voltage levels, rotating gears, fluid levels, etc.
- Digital circuits usually depend on specific voltage levels to represent 1 and 0
- **Bit: Binary digit**
Scope: Levels of Logic

- Multiple Level Logic: Many layers of two level logic with some inverters, e.g.
 \[(((a+bc)'+ab')'+b'c'+c'd)'+bc'+c'e \]
 (A network of two level logic)
- Two Level Logic: Sum of products, or product of sums, e.g.
 \[ab + a'c + a'b', \quad (a'+c)(a+b')(a+b+c') \]

Features of Digital Logic Design
- Multiple Outputs
- Don’t care sets

1.2 Boolean Algebra (Review)

George Boole, 1815-1864

- Born to working class parents: Son of a shoemaker
- Taught himself mathematics and joined the faculty of Queen’s College in Ireland.
- Wrote *An Investigation of the Laws of Thought* (1854): systematize Aristotle’s logic
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.
Review of Boolean Algebra

Let B be a nonempty set with two 2-input operations, a 1-input operation \(\cdot \) (complement), and two distinct elements 0 and 1. Then B is called a Boolean algebra if the following axioms hold.

- **Associative laws:** \((a+b)+c=a+(b+c)\), \((a \cdot b) \cdot c=a \cdot (b \cdot c)\)
- **Commutative laws:** \(a+b=b+a\), \(a \cdot b=b \cdot a\)
- **Distributive laws:** \(a+(b \cdot c)=(a+b) \cdot (a+c)\), \(a \cdot (b+c)=a \cdot b+a \cdot c\)
- **Identity laws:** \(a+0=a\), \(a \cdot 1=a\)
- **Complement laws:** \(a+a'=1\), \(a \cdot a'=0\)

Review of Boolean Algebra: Duality

<table>
<thead>
<tr>
<th></th>
<th>((a+b)+c=a+(b+c))</th>
<th>((a \cdot b) \cdot c=a \cdot (b \cdot c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associative laws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutative laws</td>
<td>(a+b=b+a)</td>
<td>(a \cdot b=b \cdot a)</td>
</tr>
<tr>
<td>Distributive laws</td>
<td>(a+(b \cdot c)=(a+b) \cdot (a+c))</td>
<td>(a \cdot (b+c)=a \cdot b+a \cdot c)</td>
</tr>
<tr>
<td>Identity laws</td>
<td>(a+0=a)</td>
<td>(a \cdot 1=a)</td>
</tr>
<tr>
<td>Complement laws</td>
<td>(a+a'=1)</td>
<td>(a \cdot a'=0)</td>
</tr>
</tbody>
</table>

Duality: We swap all operators between (+,.) and interchange all elements between (0,1).

For a theorem if the statement can be proven with the laws of Boolean algebra, then the duality of the statement is also true.
1.3 Switching functions: Operators and Digital Logic Gates

AND

<table>
<thead>
<tr>
<th>id</th>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = AB \]

Input 0 dominates Y
0 blocks the output
1 passes signal A

OR

<table>
<thead>
<tr>
<th>id</th>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = A + B \]

Input 1 dominates Y
0 passes signal A
1 blocks the output

NOT

\[Y = A' \]

\[f(a,b,c) = ab + a'b' + (bc + b'c' + ac + ac') \]

Find \((a,b,c) \), s.t. \(f(a,b,c) = 1 \)

\[f(a,b,c) = 0 \text{ NPCompl} \]

If \(a = 1 \Rightarrow b = 0 \Rightarrow c = 1 \Rightarrow f = 1 \)

If \(a = 0 \Rightarrow b = 1 \Rightarrow c = 0 \Rightarrow f = 1 \)

\[m_7 = \text{if } a = b = c = 1 \]

1.3 Switching functions: Operators and Digital Logic Gates

AND

<table>
<thead>
<tr>
<th>id</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = ABC \]

0 blocks the output
1 passes signal A
For AND, only one row is true (minterm)

OR

<table>
<thead>
<tr>
<th>id</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = A + B + C \]

0 passes signal A
1 blocks the output
For OR, only one row is false (maxterm)

\[M_0 = 0 \text{ if } A = B = C = 0 . \]
Switching Expressions vs Logic Diagrams

Switching expression is related to logic implementation

- Switching Expression: #literals, #operators
- Schematic Diagram: #gates, #nets, #pins
Laws and Logic Diagrams

Associativity Laws
\[(A+B) + C = A + (B+C)\]

\[(AB)C = A(BC)\]

Identity Laws
\[A \cdot 1 = A \quad A + 1 = 1\]
\[A \cdot 0 = 0 \quad A + 0 = A\]

Complement Laws
\[A + A' = 1 \quad A \cdot A' = 0\]

Distributive Laws
\[A \cdot (B+C) = A \cdot B + A \cdot C\]

\[A+B \cdot C = (A+B) \cdot (A+C)\]
Switching Expression and Logic

Schematic Diagram:
5 primary inputs
1 primary output
4 gates (3 ANDs, 1 OR)
9 signal nets
12 pins

Boolean Algebra:
5 variables
1 expression
4 operators (3 ANDs, 1 OR)
5 literals

Switching Expression and Logic

Schematic Diagram:
5 primary inputs
4 components (gates)
9 signal nets
12 pins

Boolean Algebra:
5 literals
4 operators

A. #inputs ↔ I. #variables
B. #gates ↔ II. #operators
C. #nets ↔ III. #variables + #operators
D. #pins 12 IV. #literals + 2 #operators - 1
E. None
Example: $f(a, b, c) = ab + a'c + a'b'$

Example: $f(a, b, c) = (a' + c)(a + b')(a + b + c)$
1.4 Handy Tools

Boolean Algebra
• DeMorgan’s Law: Complements
• Consensus Theorem

Switching Logic
• Shannon’s Expansion
• Truth Table
• Karnaugh Map (single output, two level logic)

DeMorgan’s Theorem and Digital Logic

T12. DeMorgan’s Theorem \((A+B)' = A'B'\) \((AB)' = A' + B'\)

- \(Y = (AB)' = A' + B'\)

- \(Y = (A + B)' = A'B'\)
DeMorgan’s Theorem: Bubble Pushing

- Pushing bubbles backward (from the output) or forward (from the inputs) changes the body of the gate from AND to OR or vice versa.
- Pushing a bubble from the output back to the inputs puts bubbles on all gate inputs.

- Pushing bubbles on *all* gate inputs forward toward the output puts a bubble on the output and changes the gate body.

Consensus Theorem

- $AB + AC + B'C$
- $(A+B)(A+C)(B'+C)$

$$= AB + B'C$$
$$= (A+B)(B'+C)$$

The consensus of $AB, B'C$ is: ?

Exercise: to prove the reduction using
(1) Venn Diagrams,
(2) Boolean algebra,
(3) Logic simulation and
(4) Shannon’s expansion
Consensus Theorem: Venn Diagrams

\[AB + AC + B'C : AB + B'C \]

\[\begin{array}{ll}
\text{A} & \text{A} \\
\text{B} & \text{B} \\
\text{C} & \text{C} \\
\end{array} \]

Consensus Theorem: Boolean Algebra

- \[AB + AC + B'C \]
 \[= AB + B'C \]
 \[AB + AC + B'C \]
 \[= AB + AC1 + B'C \]
 \[= AB + AC(B+ \overline{B'}) + B'C \]
 \[= AB + AC \cdot \overline{A} + AB'C + B'C \]
 \[= AB(1 + C) + (A + 1)B'C \]
 \[= AB + B'C \]

- \((A + B)(A + C)(B' + C) \)
 \[= (A + B)(B' + C) \]

\(<25> \)
Consensus Theorem: Logic Simulation

\[f(A,B,C) = AB + AC + B'C \]
\[g(A,B,C) = AB + B'C \]

<table>
<thead>
<tr>
<th>Index</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AB</th>
<th>AC</th>
<th>B'C</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
ab + ab' + a = a \\
ab + a'b + b = a' + b \\
\underline{ab' + a'b + b'b} = ab' + a'b \\

abc + a'cd \quad \text{bcd} \quad \text{conclusion}
\]
Consensus Theorem (Examples)

Which one is not a consensus of the expressions on the right.

A. B

1. \(A + A' B = A + B \)

B. BC

2. \(A + A' BC = A + BC \)

C. \((B+C)D\)

3. \(A(B+C) + A'D \)

D. BCD

E. BCDE

4. \(ABC + A'D + BCDE = ABC + A'D \)

\[A + AB = A(1+B) = A \cdot 1 = A \]

Shannon's Expansion

- Shannon's expansion assumes a switching algebra system
- Divide a switching function into smaller functions
- Pick a variable \(x \), partition the switching function into two cases: \(x=1 \) and \(x=0 \)
 - \(f(x,y,z,\ldots) = xf(x=1,y,z,\ldots) + x'f(x=0,y,z,\ldots) \)
- For example
 - \(f(x) = xf(1) + x'f(0) \)
 - \(f(x,y) = xf(1,y) + x'f(0,y) \)