CSE 132C
Database System Implementation

Arun Kumar

Review Discussion 1
Common Info: Netflix Schema

Ratings / R

<table>
<thead>
<tr>
<th>RatingID</th>
<th>Stars</th>
<th>RateDate</th>
<th>UID</th>
<th>MID</th>
</tr>
</thead>
<tbody>
<tr>
<td>7254</td>
<td>4.5</td>
<td>12/15/19</td>
<td>839</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Users / U

<table>
<thead>
<tr>
<th>UID</th>
<th>UName</th>
<th>Age</th>
<th>JoinDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Alvarez</td>
<td>39</td>
<td>11/02/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Movies / M

<table>
<thead>
<tr>
<th>MID</th>
<th>Name</th>
<th>Year</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>492</td>
<td>Parasite</td>
<td>2019</td>
<td>Bong Joon-Ho</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2
Common Info: Netflix Database

- All attributes in the given Netflix database are of fixed length and 8 bytes long, except for Director, Name, and UNName, which are 40 bytes long.
- In the given instance, every UID in U and every MID in M arises at least once in R.
- The foreign keys have no dangling references.
- All tables are stored as heap files.
- The rough number of pages of R, U, and M are 100 million, 10 million, and 1 million, respectively.
- Page size is 4 KB (4000 bytes).
Exercise

Q1) [3pts] Which 2-table key-foreign key join has the larger output in terms of cardinality? In terms of arity? In terms of number pages?
Exercise

Q2) [5pts] What is the rough size in number of pages of the output of the 3-table natural star join in pages?
Exercise

Q3) [5pts] What is the largest possible size (roughly) in number of pages of the output of the following query? Assume the aggregate attribute is 8 bytes long.

\[\gamma_{UID, AVG(Stars)}(R) \]
Exercise

Q4) [4pts] Write a single relational algebra query to answer the following:
Which user-movie ratings do not exist in R?
Exercise

Q5) [6pts] You are given 100,000 buffer frames. What is the lowest possible I/O cost in number of pages of sorting R on Stars using any of the optimizations discussed in the lectures?