CSE 132C Spring 2022 Midterm Exam

Answers

Q 1. [12pts] For each question below, select the right option (only one is correct).

1. Which of the following tells us if a page in the buffer pool is edited by a query?
 (A) PinCount (B) DirtyBit (C) Wait queue
 (D) Buffer replacement policy (E) Number of buffer frames
 ANSWER: (B)

2. It is *not* necessary that star joins are always also the following form of joins.
 (A) Snowflake Joins (B) Equi Joins
 (C) Theta Joins (D) Inner Joins (E) Natural Joins
 ANSWER: (E)

3. Which of the following index alternatives causes the size of a data entry to depend on the arity of the relation being indexed?
 (A) AltRecord (B) AltRID (C) AltRIDList (D) None of ABC (E) All of ABC
 ANSWER: (A)

4. Which of the following storage hardware is byte addressable?
 (A) Magnetic hard disk (B) Flash / SSD (C) Tape
 (D) Non-volatile RAM (E) All of these
 ANSWER: (D)

5. Consider the relation schema `Customers(CustomerID, Name, Age, Zipcode, SSN)` with primary key `CustomerID` and alternate key `SSN`. Which of the following indexes is *not* a unique index?
 (A) Clustered B+ tree on (SSN, Name) (B) Clustered B+ tree on (Age, CustomerID)
(C) Unclustered B+ tree on (Name, Age) (D) Unclustered B+ tree on (Age, SSN)
(E) Clustered B+ tree on (CustomerID, Age, SSN)
ANSWER: (C)

6. Consider the same relation schema as the previous question. Which of the following indexes will certainly match the following selection query: $\sigma_{Age >= 40}(Customers)$?
(A) Clustered B+ tree on (SSN, Name) (B) Clustered B+ tree on (Age, CustomerID)
(C) Unclustered B+ tree on (Name, Age) (D) Unclustered B+ tree on (Age, SSN)
(E) Clustered B+ tree on (CustomerID, Age, SSN)
ANSWER: (B)

Q 2. [15pts] Suppose we are sorting a relation with 100 million pages and we have 100 buffer pages for the external merge sort (EMS). A "pass" over the relation is defined as one read and write of the whole file. In all of the following, you have to include both the sort and merge phases. Clearly circle the correct answer for each of the following questions.

1. [2pts] How many passes will a naive 2-way EMS perform? (Hint: $2^{10} \approx 10^3$)
 (a) 25 (b) 26 (c) 27 (d) 28 (e) 29 (f) 30
 ANSWER: (d) 28

2. [2pts] How many passes will a standard multi-way EMS perform, assuming we do not use any of the three improvements discussed in class?
 (a) 3 (b) 4 (c) 5 (d) 6 (e) 7 (f) 8
 ANSWER: (c) 5

3. [2pts] How many passes will a multi-way EMS perform, assuming we use replacement sort for internal sorting?
 (a) 3 (b) 4 (c) 5 (d) 6 (e) 7 (f) 8
 ANSWER: (b) 4
4. [3pts] How many passes will a multi-way EMS perform, assuming we use replacement sort for internal sorting along with double buffering but no blocked I/O?
(a) 3 (b) 4 (c) 5 (d) 6 (e) 7 (f) 8

ANSWER: (c) 5

5. [3pts] How many passes will a multi-way EMS perform, assuming we use replacement sort for internal sorting along with blocked I/O with block sizes of 10 pages but no double buffering?
(a) 3 (b) 4 (c) 5 (d) 6 (e) 7 (f) 8

ANSWER: (e) 7

6. [4pts] Which among the following numbers of buffer pages is the lowest that will ensure EMS finishes in just 2 passes? Use any optimization discussed in class that can lower the number of passes.
(a) 100 (b) 1,000 (c) 10,000 (d) 100,000 (e) 1 million (f) 10 million

ANSWER: (c) 10,000

Q 3. [12pts] Consider the following extendible hash index with 4 slots per bucket.

1. [5pts] Draw the index after the following sequence of operations are completed: delete 10*, insert 42*.
2. [7pts] Now draw the index after the following additional sequence of operations are completed: insert 32*, delete 9*. Note that these operations are performed after the previous question’s operations on the original index shown.

Q 4. [11pts] You are given the following simplified relational database for shopping. We use aliases P for Products, G for Category, C for Customers, and R for Purchases.

P: Products (PID, PName, Vendor, Price)
G: Categories (PID, Category)
C: Customers (CID, CName, Zipcode, Age)
R: Purchases (CID, PID, Date, Quantity)

Products.PID and Customers.CID are primary keys in their respective tables. In Categories, PID is a foreign key referring to Products.PID. In Purchases, CID and PID are foreign keys referring to Customers.CID and Products.PID, respectively. Age is in years. All relations are assumed to be sets of tuples (no bag semantics).

1. [5pts] Write a relational algebra query to answer the following: Get the set of vendors of products bought by customers of age at least 18 years.

ANSWER: \(\pi_{Vendor}(\sigma_{Age \geq 18}(C \bowtie R \bowtie P)) \)

2. [6pts] Write a relational algebra query to answer the following: Get the details of all products in categories that the vendor Nestle does not have products in.

ANSWER: Intuition is to first get the set of all categories that Nestle has products in. Then remove that from the set of all categories. Then finally obtain all product details of those products.

\[P \bowtie G \bowtie (\pi_{Category}(G) - \pi_{Category}(\sigma_{Vendor='Nestle'}(P \bowtie G))) \]