Lecture 18: Interdomain routing
Border Gateway Protocol

CSE 123: Computer Networks
Aaron Schulman

Some figures courtesy Mike Freedman
Lecture 18 Overview

- Path vector routing
- Border Gateway Protocol (BGP)
 - The canonical path vector protocol
 - How routing gets done on the Internet today
- AS relationships
 - Customer/Provider
 - Multihoming
 - Peer-to-peer
Autonomous Systems

- Internet is divided into Autonomous Systems
 - Distinct regions of administrative control
 - Routers/links managed by a single “institution”
 - Service provider, company, university, …

- Hierarchy of Autonomous Systems
 - Large, “tier-1” provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university

- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - … but, neighboring ASes interact to coordinate routing
Border routers summarize and advertise their routes to external neighbors and vice-versa.
- Border routers apply policy.

Internal routers can use notion of default routes.

Core is default-free; routers must have a route to all networks in the world.

But what routing protocol?

CSE 123 – Lecture 18: Interdomain Routing
Issues with Link-state

- Topology information is flooded
 - High bandwidth and storage overhead
 - Forces nodes to divulge sensitive information

- Entire path computed locally per node
 - High processing overhead in a large network

- Minimizes some notion of total distance
 - Works only if policy is shared and uniform

- Typically used only inside an AS
 - E.g., OSPF and IS-IS
Advantages

- Hides details of the network topology
- Nodes determine only “next hop” toward the destination

Disadvantages

- Minimizes some notion of total distance, which is difficult in an interdomain setting
- Slow convergence due to the counting-to-infinity problem (“bad news travels slowly”)

Idea: extend the notion of a distance vector

- To make it easier to detect loops
Path-vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per destination
 - Path vector: send the entire path for each destination
Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path “3, 2, 1”
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement
Each node can apply local policies
- Path selection: Which path to use?
- Path export: Which paths to advertise?

Examples
- Node 2 may prefer the path “2, 3, 1” over “2, 1”
- Node 1 may not let node 3 hear the path “1, 2”
Border Gateway Protocol

- Interdomain routing protocol for the Internet
 - Prefix-based path-vector protocol
 - Policy-based routing based on AS Paths
 - Evolved during the past 28 years

- 1989: BGP-1 [RFC 1105], replacement for EGP
- 1990: BGP-2 [RFC 1163]
- 1991: BGP-3 [RFC 1267]
- 1995: BGP-4 [RFC 1771], support for CIDR
- 2006: BGP-4 [RFC 4271], update
Basic BGP Operation

Establish session

Exchange all active routes

Exchange incremental updates

BGP session between Neighbors (TCP)

While connection is ALIVE exchange route UPDATE messages
A router learns multiple paths to destination
- Stores all of the routes in a routing table
- Applies policy to select a single active route
- ... and may advertise the route to its neighbors

Incremental updates
- Announcement
 » Upon selecting a new active route, add own AS to path
 » ... and (optionally) advertise to each neighbor
- Withdrawal
 » If the active route is no longer available
 » ... send a withdrawal message to the neighbors
A Simple BGP Route

- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including
 - AS path (e.g., “7018 88”)
 - Next-hop IP address (e.g., 12.127.0.121)
(some) BGP Attributes

- **AS path**: ASs the announcement traversed
- **Next-hop**: where the route was heard from
- **Origin**: Route came from IGP or EGP
- **Local pref**: Statically configured ranking of routes within AS
- **Multi Exit Discriminator**: preference for where to exit network
- **Community**: opaque data used for inter-ISP policy
For Next Time

- Read P&D 3.5 (Router Implementation)