Lecture 10 Overview

• IP Protocol

• Fragmentation
 • MTU and IP ID
 • Path MTU discovery
Internetworking

- Cerf & Kahn74, “A Protocol for Packet Network Intercommunication”
 - Foundation for the modern Internet

- Routers forward packets from source to destination
 - May cross many separate networks along the way

- All packets use a common Internet Protocol
 - Any underlying data link protocol
 - Any higher layer transport protocol
 - This is the “thin waist”
IP Networking

Router

WiFi

data packet

WiFi IP TCP HTTP

Ethernet

data packet

ETH IP TCP HTTP

CSE 123 – Lecture 10: IP Protocol
A router is a store-and-forward device

- Routers are connected to multiple networks
- On each network, looks just like another host
- A lot like a switch, but supports multiple datalink layers and makes decisions at the network layer

Must be explicitly addressed by incoming frames (L2)

- Not at all like a switch, which is transparent
- Removes link-layer header, parses IP header (L3)

Looks up next hop, forwards on appropriate network

- Each router need only get one step closer to destination
IP Philosophy

- Impose few demands on network
 - Make few assumptions about what network can do
 - No QoS, no reliability, no ordering, no large packets
 - No persistent state about communications; no connections

- Manage heterogeneity at hosts (not in the network)
 - Adapt to underlying network heterogeneity
 - Re-order packets, detect errors, retransmit lost messages…
 - Persistent network state only kept in hosts (fate-sharing)

- Service model: best effort, a.k.a. send and pray
IP (version 4) Packet Header

<table>
<thead>
<tr>
<th>0</th>
<th>15</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>ver</td>
<td>HL</td>
<td>TOS</td>
<td>length</td>
</tr>
<tr>
<td>identification</td>
<td></td>
<td>R M</td>
<td>D</td>
</tr>
<tr>
<td>TTL</td>
<td>protocol</td>
<td>header checksum</td>
<td></td>
</tr>
<tr>
<td>source address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>options (if any)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data (if any)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: An IP packet header consists of several fields, each occupying a specific position in the header. The header is 20 bytes long. Each field has a specific purpose:

- **version (ver)**: Specifies the version of IP protocol, currently 4.
- **header length (length)**: Specifies the length of the header in 32-bit words.
- **type of service (TOS)**: Specifies the type of service for the packet.
- **total length**: Indicates the total length of the packet in bytes, including the header.
- **identification**: A field used for packet identification and fragmentation.
- **flags**: Indicates if the packet is fragmentable and the fragment offset.
- **fragment offset**: Specifies the offset of the fragment within the original packet.
- **time to live (TTL)**: Specifies the maximum number of hops a packet can travel before being discarded.
- **protocol**: Specifies the protocol for the packet content.
- **source address**: Indicates the source IP address.
- **destination address**: Indicates the destination IP address.
- **options (if any)**: Contains any additional options that may be present in the packet.
- **data (if any)**: Contains the actual data payload of the packet.
Version field

- Which version of IP is this?
 - Plan for change
 - Very important to be at the beginning (why?)

- Current versions
 - 4: most of Internet today
 - 6: new protocol with larger addresses, widely adopted today
 - What happened to 5? Standards body politics.
Header length

- How big is IP header?
 - Counted in 32-bit words
 - Variable length header
 » Options
 - Engineering consequences of variable length…
 » Hardware can’t always assume fixed length

- Most IP packet headers are 20 bytes long
Type-of-Service

- How should this packet be treated?
 - Care/don’t care for delay, throughput, reliability, cost
 - How to interpret, how to apply on underlying net?
 - Largely unused until 2000 (hijacked for new purposes, ECN & Diffserv)
Length

- How long is whole packet in bytes?
 - Includes header
 - Limits total packet to 64K
 - Redundant?

<table>
<thead>
<tr>
<th>ver</th>
<th>HL</th>
<th>TOS</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 bytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>identification</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td>protocol</td>
</tr>
<tr>
<td></td>
<td>header checksum</td>
</tr>
<tr>
<td>source address</td>
<td>destination address</td>
</tr>
<tr>
<td>options (if any)</td>
<td>data (if any)</td>
</tr>
</tbody>
</table>
TTL (Time-to-Live)

- How many more routers can this packet pass through?
 - Designed to limit packet from looping forever
- Each router decrements TTL field
- If TTL is 0 then router discards packet
Which transport protocol is the data using?
- i.e. how should a host interpret the data
 - TCP = 6
 - UDP = 17
IP Checksum

- Header contains simple checksum
 - Validates content of header only
- Recalculated at each hop
 - Routers need to update TTL
 - Hence straightforward to modify
- Ensures correct destination receives packet
So what *does* IP do?

- Addressing to/from hosts and networks
- Fragmentation (handling different link layer protocols)
 - E.g. FDDI’s maximum packet is 4500 bytes while Ethernet is 1500 bytes, how to manage this?
- Some error detection
- Routers only forward packets to next hop
 - They do not:
 » Detect packet loss, packet duplication
 » Reassemble or retransmit packets

- Today we’ll talk about fragmentation
Fragmentation

- Different networks may have different maximum frame sizes
 - Maximum Transmission Unit (MTUs)
 - Ethernet 1500, WiFi 2,346
- Router breaks up single IP packet into two or more smaller IP packets
 - Each **fragment** is labeled so it can be correctly **reassembled**
 - *End host* reassembles them into original packet
IP ID and Bitflags

- Source inserts unique value in identification field
 - Also known as the IPID
 - If packet is fragmented, the router copies this value into any fragments
- Offset field indicates position of current fragment (in bytes/8)
 - Zero for non-fragmented packet
- Bitflags provide additional information
 - More Fragments bit helps identify last fragment
 - Don’t Fragment bit prohibits (further) fragmentation
 - Note recursive fragmentation easily supported—just requires care with More Fragments bit
Fragmentation Example

One large datagram becomes several smaller datagrams

(Offset actually encoded as bytes/8)
Costs of Fragmentation

- Interplay between fragmentation and retransmission
 - A single lost fragment may trigger retransmission
 - Any retransmission will be of entire packet (why?)

- Packet must be completely reassembled before it can be consumed on the receiving host
 - Takes up buffer space in the receiver in the meantime
 - When can it be garbage collected?

- Why not reassemble at each router?
Discovering MTU on path

- Path Maximum Transmission Unit (MTU) is the smallest MTU along path
 - Packets less than this size don’t get fragmented

- Fragmentation is a burden for routers
 - We already avoid reassembling at routers
 - Avoid fragmentation too by having hosts learn path MTUs

- Hosts send packets, routers return error if too large
 - Hosts can set “don’t fragment” flag
 - Hosts discover limits, can size packets at source
 - ICMP protocol: special IP packet format for sending error msgs
 - Reassembly at destination as before
For Next Time

• Read 4.1.3

• Homework 2 out today

• Good time to start reading spec for Project 2!