
CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 31, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 18a

A few things about public-key cryptanalysis

Brute force

O(
√

#G)-time discrete logarithms

Subgroup attacks

Subexponential discrete logarithms and factoring

Caveat: breakable v. secure

We discuss several aspects of cryptanalysis and things that can be done.
When X can be broken in practice today, it is certainly not secure.
When X is hard to break in practice today, it DOES NOT MEAN that it is
secure, because

we should think of state-level adversarires;
the security parameters must provide for decades of future use;
we want some margin.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 1/35

Plan

Brute force

O(
√

#G)-time discrete logarithms

Subgroup attacks

Subexponential discrete logarithms and factoring

What can be brute-forced?

It is always possible to attempt a break with brute force.

DES, with key space 255, can be brute forced.
(Smarter techniques exist, but in the end brute forcing works just as
well in practice.)
Anything that can be broken by the exploration of 240 to 260

possibilities is eminently a target for brute force:
If 240, it is a computation that requires very little resources, and can be
done repeatedly.
On the other end of this spectrum, and on to 280-time computations,
this becomes a significant cryptanalytic effort, which might make sense
for high-value targets only.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 2/35

Reducing to a large enumeration

Sometimes, cryptanalysis consists of a phase which reduces the problem to
a large enumeration, which can then be done in a massively parallel way.
This is not exactly brute force, but it does share some aspects with it.

Collisions on SHA-1 are like that.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 3/35

Thresholds

We want to say that X is secure given that it requires an enumeration of
at least 2k possibilities.
What is a good value of k? (see also note 214 on Piazza)

Easily breakable: below k ≤ 60.
Doable with considerable effort or by state-level adversaries: k ≈ 80.
Safe now and for some time ahead: k ≥ 128.

Note: the first two thresholds increase slightly over time.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 4/35

Plan

Brute force

O(
√

#G)-time discrete logarithms

Subgroup attacks

Subexponential discrete logarithms and factoring

The discrete logarithm problem

Definition (The Discrete Logarithm Problem (DLP))
Let G be a group and g ∈ G . Let h ∈ ⟨g⟩. The discrete logarithm of h to
base g is the integer k such that gk = h. It is uniquely defined modulo the
order of g .

In what follows, we let m = #⟨g⟩ be the order of g .
Note: in the definition, if we require that g be a generator of G , then m is
also the order of G .

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 5/35

Baby-step Giant-step algorithm

There is an algorithm that computes discrete logarithms in any group.
Goal:

Write the unknown discrete logarithm k as

k = iM + j

for an integer M ≈
√

m so that i and j are roughly the same size.
Try to solve for i and j by finding matching values.

Important observation:

h = gk ⇔ h = g iM · g j

h(g−M)i = g j .

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 6/35

Baby-step Giant-step algorithm

Let h = gx . Write x = iM + j for a chosen integer M, with 0 ≤ i ≤ m/M
and 0 ≤ j ≤ M.
Goal: find i and j such that h(g−M)i = g j .
Algorithm:

compute γ = g−M .
Baby steps: compute S = {g j | 0 ≤ j ≤ M}.
Giant steps: for 0 ≤ i ≤ m/M, compute hγ i and stop if it is in S.

Complexity: O(
√

m) (deterministic, proven).

if M is chosen to be ⌈
√

m⌉
if the test “is in S” is done in O(1) (e.g., with hash tables)

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 7/35

Time and Space

Complexity of Baby-step Giant-step, as described.

Time O(
√

m)
Memory O(

√
m)

Improvements (probabilistic / heuristic):

Time O(
√

m)
Memory O(1)

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 8/35

If this is all we can do. . .

The bound O(
√

m) is a universal upper bound on the hardness of
cryptanalysis. It can never be harder. But it may be faster!

If it were a lower bound we would know how to parameterize public-key
crypto quite well.

Example: in order to provide 128-bit security (2128 operations
needed), elliptic curves are chosen over 256-bit fields (leading to
groups with ≈ 2256 elements).
This is because for EC, no known algorithm is faster than O(

√
m).

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 9/35

Generic groups

An often-cited result:

Theorem (DLP in generic groups; Nechaev–Shoup)
In a generic group G, the cost of computing a DLP is asymptotically
proportional to

√
#G.

A generic group is a group about which we know NOTHING.

Problem: we always know something!
This result is important, but it has no practical impact.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 10/35

Plan

Brute force

O(
√

#G)-time discrete logarithms

Subgroup attacks

Subexponential discrete logarithms and factoring

Groups and subgroups

Fact: If G is a cyclic group and n = #G , then for each divisor d of n,
there is a unique subgroup Gd of G such that #Gd = d .

Proof: Let g be a generator. Pick Gd = ⟨gn/d⟩.

Let us write n =
∏r

i=1 pei
i .

Is it possible to use this for the computation of discrete logarithms in G?

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 11/35

Plan

Subgroup attacks
CRT
CRT and DLP
Consequences of Pohlig-Hellman

The Chinese Remainder Theorem

Alice and Bob run around Crypto Wood, whose perimeter is one mile.
(they do multiple laps)

Alice runs a mile in 7 minutes.
Bob runs a mile in 9 minutes.

I’m standing exactly where Alice and Bob started some time ago.
Alice finished a lap 3 minutes ago. Bob finished a lap 1 minute ago.
How long have they been running?

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 12/35

The Chinese Remainder Theorem

Let x = time since Alice and Bob started. We have:{
x ≡ 3 (mod 7)
x ≡ 1 (mod 9)

(note: it is important that 7 and 9 are coprime)

Answer: x = 10. Or possibly x = 73, or x = 136,
The answer is defined modulo lcm(7, 9) = 7 × 9 = 63.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 13/35

The Chinese Remainder Theorem

Let x = time since Alice and Bob started. We have:{
x ≡ 3 (mod 7)
x ≡ 1 (mod 9)

(note: it is important that 7 and 9 are coprime)
Answer: x = 10. Or possibly x = 73, or x = 136,
The answer is defined modulo lcm(7, 9) = 7 × 9 = 63.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 13/35

The abstract point of view

The CRT is often written as:
Theorem
Let n =

∏r
i=1 pei

i with all primes pi distinct. We have an explicit ring
isomorphism:

Z/nZ ∼=Z/pe1
1 Z × · · · ×Z/per

r Z.

(this implies in particular the formula for φ(n))

In practice, this statement says little about how we really use the CRT.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 14/35

A CRT example


x ≡ 3 (mod 7)
x ≡ 1 (mod 9)
x ≡ 8 (mod 13)

Note: 7, 9, and 13 are pairwise coprime.
Algorithm:

Compute n = 7 × 9 × 13 = 819.
Compute n7 = n

7 = 117 and λ7 = (n7)−1 mod 7 = 3.
n9 = n

9 = 91 and λ9 = (n9)−1 mod 9 = 1.
n13 = n

13 = 63 and λ13 = (n13)−1 mod 13 = 6.
Compute x = 3n7λ7 + 1n9λ9 + 8n13λ13 mod n =
(3 × 117 × 3) + (1 × 91 × 1) + (8 × 63 × 6) mod n = 73.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 15/35

Plan

Subgroup attacks
CRT
CRT and DLP
Consequences of Pohlig-Hellman

CRT and DLP

Let G = ⟨g⟩. Assume #⟨g⟩ = m =
∏r

i=1 pei
i .

We want to find DLogG,g(h) = k, which is defined modulo m = #⟨g⟩.
Can we turn this into a CRT-like system of equations? YES.
Write qi = pei

i .

G has a unique subgroup Gi of order qi : ⟨gi = gn/qi ⟩.
hi = hn/qi is also in Gi . Let ki = DLogGi ,gi (hi). We have:

hn/qi = gn/qi ·k = gk
i = hi = gki

i .

Therefore, if ki is known, we know that k ≡ ki (mod qi).

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 16/35

CRT/DLP example

Let p = 6553 and g = 29. The subgroup G = ⟨g⟩ of Z∗
p has order 819.

Let h = 6161.
We want to find DLogG,g(h) = k, which is defined modulo m = 819.

The subgroup G1 of order 7 is generated by g1 = g117 = 4662.
We have h117 = 3858.

In G1 = ⟨g117⟩: i 0 1 2 3 4 5 6
g i

1 1 4662 4496 3858 4564 6330 2301

Thus k1 = DLogG1,g1(h1) = 3 and k ≡ 3 (mod 7).
In G2 = g91: k2 = DLogG2,g2(h2) = 1 and k ≡ 1 (mod 9).
In G3 = g63: k3 = DLogG3,g3(h3) = 8 and k ≡ 8 (mod 13).

Conclusion: DLogG,g(h) = 73 (as in previous example).

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 17/35

Everything happens in the subgroups

The most important aspects:
The computation is broken into small pieces;
everything happens in the subgroups;
and in this example the subgroups are small.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 18/35

Pohlig-Hellman, a.k.a. CRT for DLP

Theorem (Pohlig-Hellman reduction)
If #⟨g⟩ =

∏r
i=1 qi , then one way to solve the DLP in ⟨g⟩ is to look at all

subgroups one after another, which costs at most:

O(√q1) + · · · + O(√qr).

Corollary: if all qi are small, then DLP is NOT HARD.
We need at least a large prime-order subgroup in order to have security.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 19/35

Plan

Subgroup attacks
CRT
CRT and DLP
Consequences of Pohlig-Hellman

Consequences of Pohlig-Hellman

Consequence #1:
it is best to work in a well-chosen prime order subgroup

because it’s no weaker,
and is computationally cheaper.

Consequence #2:
it is best to work in a well-chosen prime order subgroup

because doing so is less error-prone, and provides better security.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 20/35

Consequences of Pohlig-Hellman

Consequence #1:
it is best to work in a well-chosen prime order subgroup

because it’s no weaker,
and is computationally cheaper.

Consequence #2:
it is best to work in a well-chosen prime order subgroup

because doing so is less error-prone, and provides better security.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 20/35

Examples of secret leak via subgroups

Simple example: Z∗
p, g a generator of order p − 1.

If S = g s is public data (e.g., it is a public key), then this leaks s mod 2:

If S(p−1)/2 = 1, then s is even.
If S(p−1)/2 = −1 mod p, then s is odd.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 21/35

Examples of secret leak via subgroups

Worse: Z∗
p, g a generator of order p − 1.

Size of p: 1024 bits, with primes of 1, 12, 47, 52, 414, 498 bits.
Secret: a random 128-bit integer.
Public key: g s .

This is TOTALLY INSECURE!

Raise to the appropriate power to solve a DLP in a 12-bit prime-order
subgroup.
Do the same in the 47-bit and 52-bit prime-order subgroups. At
worst, this is ≈ 226 computations.
We have found s modulo a 1 + 23 + 47 + 52 = 123-bit number.
Brute-force the rest.

Sadly, this is a real story!

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 22/35

Examples of secret leak via subgroups

Worse: Z∗
p, g a generator of order p − 1.

Size of p: 1024 bits, with primes of 1, 12, 47, 52, 414, 498 bits.
Secret: a random 128-bit integer.
Public key: g s .

This is TOTALLY INSECURE!

Raise to the appropriate power to solve a DLP in a 12-bit prime-order
subgroup.
Do the same in the 47-bit and 52-bit prime-order subgroups. At
worst, this is ≈ 226 computations.
We have found s modulo a 1 + 23 + 47 + 52 = 123-bit number.
Brute-force the rest.

Sadly, this is a real story!

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 22/35

Plan

Brute force

O(
√

#G)-time discrete logarithms

Subgroup attacks

Subexponential discrete logarithms and factoring

Groups with easier DLP

There are groups with easier DLP:

Some even have completely trivial DLP, and are of course not used in
crypto (Zn with addition, for example).
More interestingly, the DLP in multiplicative subgroups of finite fields
can be computed with the Number Field Sieve algorithm.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 23/35

From lectures 10-11

Computation Time
DLP in Z∗

p e1.92(ln p)1/3(ln ln p)2/3 (roughly)
subexponential time

Factorization of N e1.92(ln N)1/3(ln ln N)2/3 (roughly)
subexponential time

TL;DR: DLP modulo a k-bit prime and factoring a k-bit integer cost
roughly the same.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 24/35

DH versus RSA

DLP underpins Diffie-Hellman. Factoring understands RSA.

RSA: Each user has their own key. Factoring one key does not make
it any easier to break another, similar size key.
DH: It’s different. p is typically a public, fixed parameter. A “key” is
ONE challenge of the form DLogZ∗

p ,g(y).

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 25/35

Precomputation for NFS DLP

Computation of DLogZ∗
p ,g(y) with NFS goes like this:

p

polynomial
selection

sieving filtering linear
algebra

log db

one-off precomputation

y , g descent

x

per-key computation

Typical data (elapsed time using many machines):

precomputation per-key
Logjam (512 bits) week minutes
DLP-240 (795 bits) months hours

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 26/35

A different perspective

DLP in Z∗
p: the per-key cost, while still subexponential, is several order of

magnitude easier than the one-off precomputation.
A few fixed, very widespread primes used for DH could be high value
targets for a massive DLP precomputation, which would make it possible
to break many challenges (= many DH key exchanges) efficiently.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 27/35

Take home messages

Brute-forcing anything that requires 260 computations or less is
eminently doable, and cheap (at least around 240).
In any group of size m, computing discrete logarithms takes at most
time O(

√
m).

When there are subgroups, the security is that of the largest
prime-order subgroup. Computations should take place only in that
subgroup.
Some groups have much easier DL, and multiplicative subgroups of
finite fields are among them. No fast DL is known for elliptic curves.
Factoring and discrete logs in finite fields have similar hardness, BUT
there is a huge difference in the per-key cryptanalysis cost.
Cryptanalysis of soon-to-be-standardized PQ primitives keep trickling,
and that should be a real concern.

UCSD CSE107: Intro to Modern Cryptography; A few things about public-key cryptanalysis 28/35

CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 31, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 18b

A History of Cryptographic Backdoors

Subverting cryptography

Plan

Subverting cryptography

Cryptographic Algorithm Components

If you wanted to subvert a cryptographic algorithm, how would you do it?
UCSD CSE107: Intro to Modern Cryptography; A History of Cryptographic Backdoors 29/35

Suggested methods to subvert cryptography

Design algorithm so that true key strength is less than apparent key
strength.
Choose “fixed” parameters to weaken algorithm strength.
Choose “fixed” parameters to encode a secret.
Weaken key generation algorithm to generate keys with less entropy.
Use a flawed random number generator so that secrets are easier to
predict.
. . .

UCSD CSE107: Intro to Modern Cryptography; A History of Cryptographic Backdoors 30/35

Black Chamber: Forerunner of the NSA

Founded post WWI.

Closed down in 1929.

Henry L. Stimson:
“Gentlemen do not read each other’s mail.”

UCSD CSE107: Intro to Modern Cryptography; A History of Cryptographic Backdoors 31/35

Crypto AG
Swiss company founded after WWII by Boris Hagelin.

1950s–1960s: Company paid by CIA to weaken algorithms.

1970: Bought in secret by CIA and German BND.

Machines used by dozens of countries from 1950s to 2000s.

Employees: “The algorithms always looked fishy.” “Not all questions
appeared to be welcome.”

WaPo: “the secret partners adopted a set of principles for rigged
algorithms... They had to be ‘undetectable by usual statistical tests’ and,
if discovered, be ‘easily masked as implementation or human errors.”’

Decades of rumors confirmed in 2019.

https://www.washingtonpost.com/graphics/2020/world/national-security/

cia-crypto-encryption-machines-espionage/
UCSD CSE107: Intro to Modern Cryptography; A History of Cryptographic Backdoors 32/35

https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/

Late 1970s: DES

NSA made two changes to IBM’s algorithm:

Changed key strength from 64 to 56 bits: overt weakening.

Changed S-boxes. Suspected to be a backdoor but later discovered to
protect against differential cryptanalysis.

UCSD CSE107: Intro to Modern Cryptography; A History of Cryptographic Backdoors 33/35

The “crypto wars” in the US

Crypto wars 1.0
Late 1970s,
US government threatened legal sanctions on researchers who
published papers about cryptography.
Threats to retroactively classify cryptography research.

Crypto wars 2.0
1990s
Main isssues: Export control and key escrow
Several legal challenges

Crypto wars 3.0
Now
Snowden
Apple v. FBI
...?
Calls for “balance”

UCSD CSE107: Intro to Modern Cryptography; A History of Cryptographic Backdoors 34/35

TBC

Continued on Thursday

UCSD CSE107: Intro to Modern Cryptography; A History of Cryptographic Backdoors 35/35

	A few things about public-key cryptanalysis
	Brute force
	O(#G)-time discrete logarithms
	Subgroup attacks
	CRT
	CRT and DLP
	Consequences of Pohlig-Hellman

	Subexponential discrete logarithms and factoring

	A History of Cryptographic Backdoors
	Subverting cryptography

