
CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 24, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 15b

Homomorphic encryption (continued)

Homomorphic encryption

Plan

Homomorphic encryption

Homomorphic encryption
From previous lecture:

Definition (homomorphic evaluation algorithm)
HE is a homomorphic evaluation algorithm for ES = (K, E ,D) and FC if
for all functions f ∈ FC and all messages M1, . . . , Mm, where m is the
number of inputs of f , the following returns true with probability 1:

For i = 1, . . . , m do Ci
$←Eek(Mi)

C $←HEhk(⟨f ⟩, C1, . . . , Cm) ; M ← Ddk(C)
Return (M = f (M1, . . . , Mm))

That is, C is an encryption of f (M1, . . . , Mm).

Definition (homomorphic encryption scheme)
Encryption scheme ES is homomorphic for the class of functions FC if
there is an efficient homomorphic evaluation algorithm HE as above.

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 1/37

Plan

Homomorphic encryption
Some simple examples of homomorphic schemes
Counting homomorphically

CTR$ is XOR-homomorphic

Let F : {0, 1}k × {0, 1}ℓ → {0, 1}L be a family of functions and let
GK (R, n) = FK (R + 1)∥ · · · ∥FK (R + n/L) .

Then recall the CTR$ symmetric encryption scheme ES = (K, E ,D) has

Alg EK (M)
R $←{0, 1}ℓ ; n← |M|
X ← GK (R, n) ⊕ M
Return R∥X

Alg DK (R∥X)
n← |X |
M ← GK (R, n) ⊕ X
Return M

Say R∥X $←EK (M) and n = |M|. If ∆ ∈ {0, 1}n and Y ← X ⊕ ∆ then
DK (R∥Y) = GK (R, n) ⊕ Y = GK (R, n) ⊕ X ⊕ ∆ = M ⊕ ∆ .

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 2/37

CTR$ is XOR-homomorphic

Let B = {0, 1}L and let B+ be the set of all strings whose length is a
positive multiple of L.

For ∆ ∈ B+, define f∆: {0, 1}|∆| → {0, 1}|∆| by f∆(M) = ∆ ⊕ M. Let
FC be the set of all functions f∆ as ∆ ranges over B+. Let ⟨f∆⟩ = ∆.

Note that f∆ is a one-input function.

Let ES be the CTR$ symmetric encryption scheme based on family of
functions F : {0, 1}k × {0, 1}ℓ → B, as above.

Then the above shows that ES is homomorphic for FC, with homomorphic
evaluation algorithm:

Alg HEε(∆, C) // |C | = ℓ + ∆
R∥X ← C // R = ℓ and X ∈ B+

Y ← X ⊕ ∆ ; Return R∥Y

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 3/37

An asymmetric XOR-homomorphic scheme

Let G = ⟨g⟩ be a cyclic group of order m. Let H : {0, 1}∗ → {0, 1}n.
Define AE = (K, E ,D) via

Alg K
x $← Zm
X ← gx

return (X , x)

Alg EH
X (M) // |M| = n

y $← Zm ; Y ← gy ; Z ← X y

W ← H(Y ∥Z) ⊕ M
return (Y , W)

Alg DH
x ((Y , W))

Z ← Y x

M ← H(Y ∥Z) ⊕W
return M

Above, X is the encryption key and x is the decryption key.

This scheme is IND-CPA in the random oracle model if CDH is hard in G .

Say (Y , W) $←EX (M). If ∆ ∈ {0, 1}n and V ←W ⊕ ∆ then
Dx ((Y , V)) = H(Y ∥Y x) ⊕ V = H(Y ∥Y x) ⊕W ⊕ ∆ = M ⊕ ∆ .

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 4/37

An asymmetric XOR-homomorphic scheme

For ∆ ∈ {0, 1}n, define f∆: {0, 1}n → {0, 1}n by f∆(M) = ∆ ⊕ M. Let
FC be the set of all functions f∆ as ∆ ranges over {0, 1}n. Let ⟨f∆⟩ = ∆.

Let ES be the above asymmetric encryption scheme.

Then the above shows that ES is homomorphic for FC, with homomorphic
evaluation algorithm:

Alg HEH
X (∆, (Y , W)) // |W | = n

V ←W ⊕ ∆ ; Return (Y , V)

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 5/37

Security of the above XOR homomorphic schemes

Both our symmetric and our asymmetric XOR homomorphic encryption
schemes, above, are IND-CPA secure.

However they are not FH-secure.

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 6/37

Further homomorphic encryption schemes
There are many schemes that are homomorphic for operations like addition
and multiplication over various groups.

The first FHE (Fully Homomorphic Encryption) scheme was given by
Gentry [Ge09]. Many further and simpler ones have been proposed. Most
schemes have to deal with very large ciphertexts, though.

A representative example is [GSW13].

Encryption in these schemes is based on matrices. The schemes allow
homomorphic evaluation of the addition and multiplication operations on
one-bit messages, which implies homomorphic evaluation of all functions.

Security (IND-CPA) is based on the Learning with Errors (LWE)
assumption.

These blog posts provide an overview of the ideas: Part 1, Part 2.

There are many libraries implementing FHE schemes.
UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 7/37

https://eprint.iacr.org/2013/340
https://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/
https://windowsontheory.org/2012/05/02/building-the-swiss-army-knife/
https://github.com/jonaschn/awesome-he#libraries

Plan

Homomorphic encryption
Some simple examples of homomorphic schemes
Counting homomorphically

A DLog-based homomorphic scheme

Based on HW5P1.
Let G = ⟨g⟩ be a group of prime order ℓ.
We let G be our message space. (IOW M must be in G below.)

Alg K
x $← Zℓ

X ← gx

return (X , x)

Alg E(X , M)
if M ̸∈ G then return ⊥
y $← Zℓ ; Y ← gy

Z ← X y ; W ← Z ·M
return (Y , W)

Alg D(x , C)
(Y , W)← C
Z ← Y x

return Z−1 ·W

This is called ElGamal encryption (IND-CPA under decisional DH).
Examples of groups that we can use: (prime-order subgroups of) elliptic
curves, of Z∗

p.

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 8/37

https://en.wikipedia.org/wiki/ElGamal_encryption

ElGamal encryption is homomorphic

Alg K
x $← Zℓ

X ← gx

return (X , x)

Alg E(X , M)
if M ̸∈ G then return ⊥
y $← Zℓ ; Y ← gy

Z ← X y ; W ← Z ·M
return (Y , W)

Alg D(x , C)
(Y , W)← C
Z ← Y x

return Z−1 ·W

Theorem
We have D(x , E(X , M1) · E(X , M2)) = M1 ·M2. (using component-wise ·)

Proof: We have

C1 = (gy1 , X y1 ·M1)
C2 = (gy2 , X y2 ·M2)

C1 · C2 = (gy1 · gy2 , X y1 ·M1 · X y2 ·M2)
= (gy1+y2 , X y1+y2 ·M1 ·M2)

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 9/37

ElGamal and homomorphism

This property is often something we do not want for cryptography (it
prevents IND-CCA), but it can be useful:
Use case: voting:

Votes are YES/NO as E(X , g) or E(X , 1).
The product of all votes is E(X , gnumber of YES).
The tally can be made on the encrypted votes, and the decryption is
only done in order to release the final count.

Pitfalls?

Decryption is H = gN with N = number of YES.
Going from H to N is hard!
Not as long as N is less that the earth population.
A smart voter could cast a vote which is E(X , g10000). This is best
addressed with zero-knowledge proofs.

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 10/37

ElGamal and homomorphism

This property is often something we do not want for cryptography (it
prevents IND-CCA), but it can be useful:
Use case: voting:

Votes are YES/NO as E(X , g) or E(X , 1).
The product of all votes is E(X , gnumber of YES).
The tally can be made on the encrypted votes, and the decryption is
only done in order to release the final count.

Pitfalls?

Decryption is H = gN with N = number of YES.
Going from H to N is hard!

Not as long as N is less that the earth population.
A smart voter could cast a vote which is E(X , g10000). This is best
addressed with zero-knowledge proofs.

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 10/37

ElGamal and homomorphism

This property is often something we do not want for cryptography (it
prevents IND-CCA), but it can be useful:
Use case: voting:

Votes are YES/NO as E(X , g) or E(X , 1).
The product of all votes is E(X , gnumber of YES).
The tally can be made on the encrypted votes, and the decryption is
only done in order to release the final count.

Pitfalls?

Decryption is H = gN with N = number of YES.
Going from H to N is hard!
Not as long as N is less that the earth population.

A smart voter could cast a vote which is E(X , g10000). This is best
addressed with zero-knowledge proofs.

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 10/37

ElGamal and homomorphism

This property is often something we do not want for cryptography (it
prevents IND-CCA), but it can be useful:
Use case: voting:

Votes are YES/NO as E(X , g) or E(X , 1).
The product of all votes is E(X , gnumber of YES).
The tally can be made on the encrypted votes, and the decryption is
only done in order to release the final count.

Pitfalls?

Decryption is H = gN with N = number of YES.
Going from H to N is hard!
Not as long as N is less that the earth population.
A smart voter could cast a vote which is E(X , g10000). This is best
addressed with zero-knowledge proofs.

UCSD CSE107: Intro to Modern Cryptography; Homomorphic encryption (continued) 10/37

CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 24, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 16a

Finite fields

Definition and properties

Polynomials and square roots

Subgroups of F∗
p

Math background, to this point

So far, for asymmetric cryptography, we mentioned:

groups (in general, not really saying what group we had in mind):
“Let G be a group generated by g , . . . ”

and we sometimes instantiated things slightly more precisely:
“Let G = Z∗

p and let g be a generator of G .”
Goal: deal with more concrete, less abstract examples. Use explicit
functions such as, in Playcrypt:

c = MOD(MULT(a, b), p) to compute c = a · b = (a × b mod p).
c = MOD_INV(a, p) to compute the inverse of a in Z∗

p.
c = MOD_EXP(a, k, p) to compute c = ak mod p.

The most complicated mathematical structure we had to deal with is Z∗
N ,

for RSA. It is complicated because N is composite.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 11/37

Who needs more math?

Cryptography is a vast area. In terms of underlying math structures,
sticking to Z∗

N can be fine, but it is often not sufficient:

If you need to implement cryptography, you will need to learn a few
extra algorithms, such as the chinese remainder theorem.
If you need to prove things about cryptographic results, you will need
to know many proof-related techniques, and a good deal of extra
mathematics.
If you need to understand the inner mechanisms of more recent
cryptographic primitives, you will need more math.
If you need to do cryptanalysis, there is no limit on the amount of
math that is potentially useful (the NSA hires many very good
mathematicians!)

A good computer scientist can become good at math, and vice versa!

UCSD CSE107: Intro to Modern Cryptography; Finite fields 12/37

Goal today: finite fields

We introduce a few additional mathematics, such as finite fields.

Finite fields are simple and ubiquitous computational objects.
Cryptography uses them a lot. In fact, we’ve been using finite fields
without saying it aloud.
Having finite fields available will allow us to present some interesting
stuff.

Some cryptanalysis results.
Elliptic curves.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 13/37

Plan

Definition and properties

Polynomials and square roots

Subgroups of F∗
p

Finite fields

A finite field: is a field,
and it is finite.

Definition (Field)
Being a field means that:

We have a group operation (notation: +, and neutral element is 0).
We have another operation (notation: × or ·).
The · operations is a group operation on the non-zero elements. The
neutral element is 1.
+ and · work well together (distributivity).

The definition also mandates that + is commutative, and finiteness
actually implies that · is commutative too (this is NOT an easy result!)

UCSD CSE107: Intro to Modern Cryptography; Finite fields 14/37

What can we do in a field?

If a, b, c are elements of a field K , we can compute expressions that yield
other field elements, such as:

a · (b + c), a · b · (c + 1), a2 · c + 8b, a123 + b456 + c789.

Non-zero field elements are invertible, so we can also compute

a + 1
a − bc if a − bc ̸= 0.

Most importantly, we can also define polynomials:

a + bX + cX 2

is a degree two polynomial, which we can evaluate at any field element.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 15/37

What can we do in a field?

If a, b, c are elements of a field K , we can compute expressions that yield
other field elements, such as:

a · (b + c), a · b · (c + 1), a2 · c + 8b, a123 + b456 + c789.

Non-zero field elements are invertible, so we can also compute

a + 1
a − bc if a − bc ̸= 0.

Most importantly, we can also define polynomials:

a + bX + cX 2

is a degree two polynomial, which we can evaluate at any field element.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 15/37

What does finiteness imply?

Given that we’re dealing with elements in a finite set K , there can’t be
infinitely many of the following elements of K :

0 (the neutral element for +);
1 (the neutral element for ·);
1 + 1 (we call this 2);
1 + 1 + 1 (we call this 3);
. . .
1 + 1 + · · ·+ 1︸ ︷︷ ︸

k times

(we call this k);

. . .

UCSD CSE107: Intro to Modern Cryptography; Finite fields 16/37

What does finiteness imply?

There has to be an integer p such that p = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p times

= 0 in K .

Definition (Characteristic)
That integer is called the characteristic of the field K .
Fact: Because K is a field, its characteristic is a prime number.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 17/37

Examples of finite fields

The most obvious example is Zp, for any prime number p.

Multiple notations: Zp, Fp, Z/pZ.
The number of elements is exactly p.
Simplest example with p = 2.
Note that when N is a composite number, ZN is NOT a field.

Are all finite fields of the form Fp = Zp =Z/pZ?

No!

There are other examples where the number of elements is a power of
the characteristic, but they’re NOT of the form Zpk !!!
Such fields appear in the internal mechanisms of AES, but we will not
cover them.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 18/37

Examples of finite fields

The most obvious example is Zp, for any prime number p.

Multiple notations: Zp, Fp, Z/pZ.
The number of elements is exactly p.
Simplest example with p = 2.
Note that when N is a composite number, ZN is NOT a field.

Are all finite fields of the form Fp = Zp =Z/pZ? No!

There are other examples where the number of elements is a power of
the characteristic, but they’re NOT of the form Zpk !!!
Such fields appear in the internal mechanisms of AES, but we will not
cover them.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 18/37

Working in Fp = Zp =Z/pZ

Since we’ve been dealing with Zp for a while, the only extra information
that we gain is that it is actually a field.

For many things, a field is a nice playground, and many
computational things work easily.
Fp = Zp =Z/pZ is finite, so there is a fixed-size unambiguous
representation of elements. Computer science likes that a lot!

UCSD CSE107: Intro to Modern Cryptography; Finite fields 19/37

Should we write modp explicitly?

The modp operation is what brings us from Z to Fp = Zp =Z/pZ. Most
often, it is implicit when it is understood that we are speaking of elements
of the finite field.

“Let g = 17 ∈ Fp” or “Let a = −1 ∈ Fp” are perfectly fine.
If we speak of elements of F17, we have 0 = 17 = 34 = 51 = −17.
They are just one single element!

In computer code, however, we want unambiguous representation:

It can make sense to have finite field elements and integers be of
different types. (with an available type conversion.)
Or we have to make consistency checks on input values.

Either way, the actual implementations of +, ·, etc. . . have to know about
p and do reductions.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 20/37

Should we write modp explicitly?

The modp operation is what brings us from Z to Fp = Zp =Z/pZ. Most
often, it is implicit when it is understood that we are speaking of elements
of the finite field.

“Let g = 17 ∈ Fp” or “Let a = −1 ∈ Fp” are perfectly fine.
If we speak of elements of F17, we have 0 = 17 = 34 = 51 = −17.
They are just one single element!

In computer code, however, we want unambiguous representation:

It can make sense to have finite field elements and integers be of
different types. (with an available type conversion.)
Or we have to make consistency checks on input values.

Either way, the actual implementations of +, ·, etc. . . have to know about
p and do reductions.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 20/37

The deal with exponents

When a is an element of a finite field K , we can compute the element:

a is in K ak This exponent k
is NOT in K !

Any exponent k ∈ Z works. However, we know that ap−1 = 1, so that we
can reduce the exponent modulo φ(p) = p − 1.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 21/37

Plan

Definition and properties

Polynomials and square roots

Subgroups of F∗
p

Polynomials and square roots

Polynomials are perfectly usable over finite fields.

Polynomials can be added, multiplied, composed, evaluated.
A polynomial factors uniquely into irreducible factors;
A polynomial of degree d has at most d roots, counting multiplicities.
It makes sense to speak of the polynomial ring K [X].

Example: X 2 − 1 is a degree two polynomial. There are only two square
roots of 1, which are 1 and −1 in Fp.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 22/37

A very special polynomial
In the finite field Fp, we know that:

∀x ∈ F∗
p, xp−1 = 1.

∀x ∈ Fp, xp = x .

So the polynomial Xp − X is a non-zero polynomial, but it evaluates to
zero at all points of Fp.
Note that if x ̸= 0 is in Fp, we have (x (p−1)/2)2 − 1, which means that:

x (p−1)/2 = ±1 ∈ Fp.

Fact: x (p−1)/2 is called the Legendre symbol.
There is a fast algorithm to compute it.

Fact: We have x (p−1)/2 = 1 IF AND ONLY IF x is a square in Fp.

Proof: □⇒ 1 is easy. In the other direction: each non-zero square b = a2

has exactly two square roots a and −a, so there are exactly (p − 1)/2
distinct squares in total.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 23/37

Computing square roots

In Fp, the computation of square roots is possible.
We do not give the algorithm. It is not a very expensive computation.
(Thinking of it, do you actually know how to compute square roots in R?)

Exercise: In the special case where p ≡ 3 (mod 4), show that if x ∈ Fp is
a square, then x (p+1)/4 is a square root of x .

UCSD CSE107: Intro to Modern Cryptography; Finite fields 24/37

Square roots modulo N

In contrast, computing square roots modulo a composite N is HARD!

Theorem (square roots modulo N are hard)
If there is an algorithm A that can compute arbitrary square roots modulo
N, then there is an algorithm B with similar running time that can factor
N with high probability.

Fact: In the other direction, if the factors of N are known, it is easy.

This dissymetry is the root of several nice cryptographic things!

Identification protocols;
Cryptanalysis.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 25/37

Plan

Definition and properties

Polynomials and square roots

Subgroups of F∗
p

F∗p = Z∗p = (Z/pZ)∗

The non-zero elements of Fp form its multiplicative group.

F∗
p = Z∗

p = (Z/pZ)∗.

Fact: Because Fp is a field, this group is cyclic.

A slightly annoying aspect is that p − 1 is never prime (for p > 3).
Fact: For each divisor q of p − 1, there is a (unique) subgroup of F∗

p that
has order exactly q.

UCSD CSE107: Intro to Modern Cryptography; Finite fields 26/37

Prime-order subgroups

Cryptography likes prime-order subgroups.

We often let q be a large prime factor of p − 1, and consider the subgroup
generated by an element of order exactly q.

Example: HW5P2
Benefit: if h generates a subgroup of prime order q of F∗

p, then the powers
hx of h can use reduction modulo q in the exponent, and Fq is a field.

Many things are possible in the exponent (as in HW5P2).
This is often used in signature schemes (examples: Schnorr, DSA).

UCSD CSE107: Intro to Modern Cryptography; Finite fields 27/37

CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 24, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 16b

Secret sharing

Secret sharing

Plan

Secret sharing

Secret sharing

Let 1 ≤ t < n. A (t, n)-secret-sharing scheme allows an entity, called the
dealer, to split s into shares s1, . . . , sn such that:

Given any t + 1 shares, one can recover s, but
Given any t or less shares, one learns nothing about s.

Secret sharing is useful in its own right and also a tool in secure
multi-party computation.

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 28/37

Secret sharing syntax

Let 1 ≤ t < n. A (t, n)-secret-sharing scheme SS = (SH,RE) is a pair of
algorithms that operate as follows:

{(i , si)}ni=1
$←SH(s) — the dealer runs the sharing algorithm SH on

input a secret s ∈ {0, 1}∗ to get a list of n shares.
s ← RE(R, {(i , si)}i∈R) — apply deterministic recovery algorithm
RE to a set R ⊆ {1, . . . , n}, and a list of shares for players in R, to
obtain output s ∈ {0, 1}∗ ∪ {⊥}.

The correctness requirement is that, for all s in the underlying message
space and all R ⊆ {1, . . . , n} with |R| ≥ t + 1 we have:

If {(i , si)}ni=1
$←SH(s) and s ′ ← RE(R, {(i , si)}i∈R) then s ′ = s.

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 29/37

Secret sharing privacy

Let SS = (SH,RE) be a (t, n)-secret-sharing scheme.

Game INDSS

procedure Initialize
b $←{0, 1}

procedure Finalize(b′)
return (b = b′)

procedure LR(T , s0, s1) // |s0| = |s1| and T ⊆ {1, . . . , n} with |T | = t
{(i , si)}ni=1

$←SH(sb) ; return {(i , si)}i∈T

Definition (ind-advantage of a secret sharing scheme)
The ind-advantage of an adversary A is

Advind
SS (A) = 2 · Pr

[
INDA

SS ⇒ true
]
− 1 .

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 30/37

Secret sharing privacy

IND-privacy for a secret-sharing scheme asks that knowledge of up to t
(out of n) shares, of a sharing of a secret, not yield any partial information
about the secret.

We refer to T as the set of corrupted players. It must have size at most t.

We say that secret-sharing scheme SS = (SH,RE) is perfect, or has
perfect privacy, if Advind

SS (A) = 0 for all A.

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 31/37

A (n − 1, n) perfect secret-sharing scheme

Let G be a commutative group whose group operation we denote by “+",
the inverse operation being “-". Examples are:

G = ZM with + being addition modulo M.
G = {0, 1}m with + being bitwise XOR.

The shares {(i , si)}ni=1 of a secret s ∈ G are chosen so that s1, . . . , sn are
random elements of G subject to the condition that

s = s1 + · · ·+ sn .

Recovery: Given s1, . . . , sn we can recover s via the above equation.

Privacy: Any n − 1 of s1, . . . , sn are randomly and independently
distributed over G , so we have perfect privacy.

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 32/37

A (n − 1, n) perfect secret-sharing scheme

Let G be a commutative group whose group operation we denote by “+",
the inverse operation being “-".

We define secret-sharing scheme SS = (SH,RE) via

Alg SH(s) // s ∈ G
For i = 1, . . . , n − 1 do si

$← G
sn ← s − (s1 + · · ·+ sn−1)
return {(i , si)}ni=1

Alg RE(R, {(i , si)}i∈R)
s ← 0 // Identity element of the group
For i ∈ R do s ← s + si
return s

This is a (n − 1, n) perfect secret-sharing scheme.

For correctness, we are only concerned with R = {1, . . . , n}.

Perfect privacy is because any n − 1 of s1, . . . , sn are randomly and
independently distributed over G .

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 33/37

Shamir’s (t, n) perfect secret-sharing scheme
Let F be a finite field of size at least n + 1. Examples are:

F = Zp where p ≥ n + 1 is a prime.
F = GF(2k) where 2k ≥ n + 1.

Fix some distinct points e1, . . . , en ∈ F.

To share secret s ∈ F, Shamir’s sharing algorithm SH picks a1, . . . , at
$← F

and defines the degree ≤ t polynomial f : F→ F via
f (x) = s +

∑t
i=1aix i ,

so that f (0) = s. The share of player i ∈ {1, . . . , n} is (i , f (ei)).

This is a perfect (t, n)-secret sharing scheme.

The fact that a degree t polynomial is determined by any t + 1 points on it
allows recovery, which is done via the polynomial interpolation algorithm.

Privacy is because the values of f on any t distinct points are random and
independent elements of F.

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 34/37

Background on polynomials

For a0, a1, . . . , at ∈ F, define Pa0,a1,...,at : F→ F by
Pa0,a1,...,at (x) =

∑t
i=0 aix i .

For R ⊆ {1, . . . , n} and i ∈ R define δR,i : F→ F by

δR,i(x) =
∏

j∈R\{i}

x − ej
ei − ej

.

Then for all ℓ ∈ R we have

δR,i(eℓ) =
{

1 if ℓ = i
0 if ℓ ̸= i .

Now for S = { si : i ∈ R } ⊆ F define QR,S : F→ F by
QR,S(x) =

∑
i∈R si δR,i(x) .

Then QR,S(eℓ) = sℓ for all ℓ ∈ R.

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 35/37

Polynomial interpolation theorem

The polynomial interpolation theorem is the following.

Let F be a finite field of size at least n + 1. Fix some distinct points
e1, . . . , en ∈ F.

Let a0, a1, . . . , at ∈ F and let si ← Pa0,a1,...,at (ei) for 1 ≤ i ≤ n.

Let R ⊆ {1, . . . , n} have size |R| ≥ t + 1 and let S = { si : i ∈ R }.

Then QR,S = Pa0,a1,...,at .

In particular QR,S(0) = a0.

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 36/37

Shamir’s (t, n) perfect secret sharing scheme

Let F be a finite field of size at least n + 1. Fix some distinct points
e1, . . . , en ∈ F.

We define secret-sharing scheme SS = (SH,RE) via

Alg SH(s) // s ∈ F
For i = 1, . . . , t do ai

$← F
For i = 1, . . . , n do si ← Ps,a1,...,at (ei)
return {(i , si)}ni=1

Alg RE(R, {(i , si)}i∈R)
S ← { si : i ∈ R }
s ← QR,S(0)
return s

This is a (t, n) perfect secret-sharing scheme.

Correctness, which assumes |R| ≥ t + 1, follows from the polynomial
interpolation theorem.

Perfect privacy is because any t of s1, . . . , sn are randomly and
independently distributed over F.

UCSD CSE107: Intro to Modern Cryptography; Secret sharing 37/37

	Homomorphic encryption (continued)
	Homomorphic encryption
	Some simple examples of homomorphic schemes
	Counting homomorphically

	Finite fields
	Definition and properties
	Polynomials and square roots
	Subgroups of Fp*

	Secret sharing
	Secret sharing

