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Forward secrecy

Definition (Forward Secrecy)
Forward secrecy asks that exposure of sk[B] does not allow recovery of
session keys K exchanged prior to the time of exposure.

FS is achieved using the DH key exchange inside the session key exchange
protocol.

Forward secrecy is considered necessary in modern session key exchange,
and is present in the TLS 1.3 protocol.

Session-key exchange protocols using DH for forward secrecy are often
called authenticated DH key exchange protocols.
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Protocol KE3

Let G = ⟨g⟩ be a cyclic group of order m in which the CDH problem is
hard.

A,ga

B,gb ,CERT[B],SigB(A∥B∥ga∥gb),MACM(1∥A∥B∥ga∥gb)

MACM(0∥A∥B∥ga∥gb)

Here a, b $← Zm are chosen by A, B, respectively, and ga, gb play the role
of nonces.

SigB(X ) is B’s signature on X , computed under sk[B] and verifiable under
the pk[B] that is in CERT[B].

Let L = gab be the DH key. Then session key is K = H1(A∥B∥ga∥gb∥L)
and MAC key is M = H2(A∥B∥ga∥gb∥L) where H1, H2 are as before.
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Protocol KE3
A,ga

B,gb ,CERT[B],SigB(A∥B∥ga∥gb),MACM(1∥A∥B∥ga∥gb)

MACM(0∥A∥B∥ga∥gb)

There is no public-key encryption used here, only signatures.

Compromise of sk[B] only gives E the ability to forge signatures. Even
given sk[B], it cannot recover the DH key L = gab from a prior exchange,
and thus cannot distinguish from random the session key
K = H1(A∥B∥ga∥gb∥L).

Accordingly this provides forward secrecy.

This is roughly the core of the unilateral session-key exchange in the TLS
1.3 handshake.
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Passwords

A password is a human-memorizable key.

Attackers can form a set D of possible passwords called a dictionary such
that

If the target password pwd is in D, and also
The attacker knows pwd = f (pwd), the image of pwd under some
public function f ,

then the target password pwd can be found via:

For all pwd′ ∈ D do
If f (pwd′) = pwd then return pwd′

This is called a dictionary, or brute-force, attack.

UCSD CSE107: Intro to Modern Cryptography; Passwords and password-authenticated key exchange 4/34



Password usage

Passwords are in widespread use for client authentication to Internet
services and servers like gmail, Amazon, Internet banking, ...

Most of us have more passwords than we can remember.

Passwords are communicated over TLS. The main threat is dictionary
attacks arising from the adversary obtaining the image pwd = f (pwd) of
the target password pwd under some public function f .

Studies show that many users select poor passwords, meaning ones that
fall into attacker dictionaries. And attackers get better and better at
making dictionaries. So preventing dictionary attacks is important for
security.
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Popular passwords
In 2016, the 25 most common passwords made up more than 10% of
surveyed passwords, with the most common making up 4%.
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Commonly heard gibberish

Over the years, recommendations about “password strength” have become
ubiquitous.

“your password must include uppercase and lowercase letters, digits,
two punctuation symbols”, etc.
and “you must change your password every 12 months”.
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XKCD 936
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NIST on passwords

NIST SP800-63B, revised in 2020 (§5.1.1.2 Memorized Secret Verifiers).

Verifiers SHOULD NOT impose other composition rules (e.g.,
requiring mixtures of different character types or prohibiting
consecutively repeated characters) for memorized secrets.
Verifiers SHOULD NOT require memorized secrets to be changed
arbitrarily (e.g., periodically). However, verifiers SHALL force a
change if there is evidence of compromise of the authenticator.
Verifiers SHOULD permit claimants to use “paste” functionality when
entering a memorized secret. This facilitates the use of password
managers, which are widely used and in many cases increase the
likelihood that users will choose stronger memorized secrets.

Password managers: lastpass, keepass, bitwarden, pass, . . .
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PAKE

A protocol for Password Authenticated Key Exchange (PAKE) assumes
client A has a password pwd and server B has either pwd or its hash under
a public hash function.

The parties interact to arrive at a common session key K satisfying
authenticity, secrecy, forward secrecy and also security against off-line
dictionary attacks.

This means the protocol never reveals an image pwd = f (pwd) of pwd
under a public function f . So even if the password is in the dictionary, the
off-line dictionary attack is infeasible.

Roughly, one adversary interaction with one of the parties can eliminate at
most one candidate password from the dictionary.

Authentication here is mutual, and no PKI / certificates are assumed.
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Protocol KE4

A,ga

B,gb ,MACM(1∥A∥B∥ga∥gb)

MACM(0∥A∥B∥ga∥gb)

Client A has password pwd that is known to server B.

Let L = gab be the DH key. Then the session key and MAC keys are K =
H1(A∥B∥ga∥gb∥L∥pwd) and M = H2(A∥B∥ga∥gb∥L∥pwd), respectively.

Is this secure against dictionary attack?
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Protocol KE4
A,ga

B,gb ,MACM(1∥A∥B∥ga∥gb)

MACM(0∥A∥B∥ga∥gb)

A successful dictionary attack by adversary E is possible, as follows:

A,ga

B,gb ,MACM(1∥A∥B∥ga∥gb)

E has A, B, ga, gb and also L = gab = (gb)a. Let
f (pwd) = MACH2(A∥B∥ga∥gb∥L∥pwd)(A∥B∥ga∥gb) .

This f is a public function of the password, allowing E to mount the
dictionary attack.
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History and status of PAKE

The first protocols were by Bellovin and Merrit, 1992.

Definitions and proven-secure protocols begin with [BPR00].

Large literature.

A representative modern PAKE protocol is OPAQUE [JKX18].
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Advanced primitives and protocols

A large body of work on cryptography for goals beyond secure
communication.

Usually concerned with privacy in broader settings.

Encompasses computing on encrypted data, secure two- and multi- party
computation protocols, zero-knowledge ...

We start with safes and commitment schemes ...
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Safes and their properties

Hiding: Without key K , one cannot recover the content of locked safe C .

Binding: A single, locked safe C cannot admit two keys K1, K2 that open
it to reveal different content M1, M2.
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Commitment schemes

Commitment schemes are, at first cut, a cryptographic (mathematical,
digital, ...) way to realize safes.

To be more accurate, a commitment scheme is a cryptographic primitive
whose definition formalizes requirements called hiding and binding. A safe
is a rough physical analogy, or metaphor, for a commitment scheme.

As with all metaphors, it has its limits, so try to understand commitment
schemes via the definitions rather than solely via the metaphor.

Zen saying: The finger pointing at the moon is not the moon ...

Commitment schemes are used in many protocols, including
zero-knowledge protocols.
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Syntax of a Commitment Scheme

A commitment scheme CS = (P, C,V) is a triple of algorithms that
operate as follows:

π $←P — a trusted party runs the parameter generation algorithm P
to generate public parameters π

(K , C) $←Cπ(M) — apply commitment algorithm C to message M to
obtain a commitment C to M along with a decommitment (or
opening) key K .
d ← Vπ(C , M, K ) — apply verification algorithm V to commitment
C , candidate message M and key K to obtain a decision d ∈ {0, 1} as
to whether C is a commitment to M.

The correctness requirement is that, for all π that may be output by P,
and all messages M from the underlying message space, we have d = 1
with probability 1 when (K , C) $←Cπ(M) and d ← Vπ(C , M, K ).
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Hiding security
Let CS = (P, C,V) be a commitment scheme.

Game HIDECS

procedure Initialize
π $←P; b $←{0, 1}
return π

procedure LR(M0, M1)
(K , C) $←Cπ(Mb)
return C

procedure Finalize(b′)
return (b = b′)

Definition (hiding-advantage)
The hiding-advantage of an adversary A is

AdvHIDE
CS (A) = 2 · Pr

[
HIDEA

CS ⇒ true
]
− 1 .

Hiding security asks that an adversary having C but not K should not
learn even partial information about the message M.
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Binding security
Let CS = (P, C,V) be a commitment scheme.

Game BINDCS

procedure Initialize
π $←P
return π

procedure Finalize(C , M0, M1, K0, K1)
v0 ← Vπ(C , M0, K0)
v1 ← Vπ(C , M1, K1)
return ((v0 =1) and (v1 =1) and (M0 ̸=M1))

Definition (binding-advantage)
The binding-advantage of an adversary A is

AdvBIND
CS (A) = Pr

[
BINDA

CS ⇒ true
]

.

Binding security asks that an adversary be unable to create a commitment
C that it can open to two different messages.
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Commitment from symmetric encryption?

Let SE = (K, E ,D) be an IND-CPA-secure symmetric encryption scheme
and let CS = (P, C,V) be the following commitment scheme:

Alg P
π ← ε
return π

Alg Cπ(M)
K $←K ; C $←EK (M)
return (K , C)

Alg Vπ(C , M, K )
if DK (C) = M then return 1
else return 0

Q: Is this hiding?

YES, since SE is IND-CPA.
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Commitment from symmetric encryption?

Let SE = (K, E ,D) be an IND-CPA-secure symmetric encryption scheme
and let CS = (P, C,V) be the following commitment scheme:

Alg P
π ← ε
return π

Alg Cπ(M)
K $←K ; C $←EK (M)
return (K , C)

Alg Vπ(C , M, K )
if DK (C) = M then return 1
else return 0

Q: Is this binding?

Not necessarily. For schemes like CTR$ or CBC$, the following adversary
will have high binding advantage:

adversary A(π)
K0, K1

$←{0, 1}k ; M0
$←{0, 1}L ; C $←EK0(M0) ; M1 ← DK1(C)

return (C , M0, M1, K0, K1)
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Commitment from symmetric encryption?

Let SE = (K, E ,D) be an IND-CPA-secure symmetric encryption scheme
and let CS = (P, C,V) be the following commitment scheme:

Alg P
π ← ε
return π

Alg Cπ(M)
K $←K ; C $←EK (M)
return (K , C)

Alg Vπ(C , M, K )
if DK (C) = M then return 1
else return 0

Q: Is this binding if we additionally assume SE is INT-CTXT-secure?

The above attack may no longer work. But the answer to the above
question is NO.

If SE is robust [ABN10,FLPQ13,FOR17] or committing [GLR17] then CS
will be binding.
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Commitment from hashing

Let H: {0, 1}∗ → {0, 1}ℓ be a collision-resistant hash function and let
CS = (P, C,V) be the following commitment scheme:

Alg P
π ← ε
return π

Alg CH
π (M)

C ← H(M)
K ← M
return (K , C)

Alg VH
π (C , M, K )

If ((C = H(M)) and (M = K ))
then return 1

Else return 0

Q: Is this binding?

YES, since H is collision resistant.
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Alg CH
π (M)

C ← H(M)
K ← M
return (K , C)

Alg VH
π (C , M, K )

If ((C = H(M)) and (M = K ))
then return 1

Else return 0

Q: Is this hiding?

NO, since C is deterministic. Specifically, the following adversary A has
AdvHIDE

CS (A) = 1:
adversary A(π)
C1 ← LR(0, 1) ; C2 ← LR(1, 1)
If (C1 = C2) then return 1 else return 0
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Commitment from hashing

Let H: {0, 1}∗ → {0, 1}ℓ and let CS = (P, C,V) be the following
commitment scheme:

Alg P
π ← ε
return π

Alg CH
π (M)

K $←{0, 1}ℓ
C ← H(K∥M)
return (K , C)

Alg VH
π (C , M, K )

If (C = H(K∥M))
then return 1

Else return 0

This is binding if H is collision-resistant (CR). Note: ℓ must be fixed!

One can give an example of CR H such that it is not hiding. But for “real"
H such as SHA256 it seems to be hiding in the sense that no attacks are
known.
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Commitment from DL

Let G = ⟨g⟩ be a cyclic group whose order m is prime. Let H: {0, 1}∗ →
Zm and let CS = (P, C,V) be the following commitment scheme:

Alg P
x $← Zm
h← gx

return h

Alg CH
h (M)

K $← Zm
C ← gH(M)hK

return (K , C)

Alg VH
h (C , M, K )

If (C = gH(M)hK ) then return 1
Else return 0

This is binding if DL is hard in G and H is collision-resistant (CR).

This is unconditionally hiding, meaning AdvHIDE
CS (A) = 0 for all A.
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Commitment from DL

Let G = ⟨g⟩ be a cyclic group whose order m is prime. Let H: {0, 1}∗ →
Zm and let CS = (P, C,V) be the following commitment scheme:

Alg P
x $← Zm
h← gx

return h

Alg CH
h (M)

K $← Zm
C ← gH(M)hK

return (K , C)

Alg VH
h (C , M, K )

If (C = gH(M)hK ) then return 1
Else return 0

The Pedersen commitment scheme [Pe91] is the special case where the
message space is Zm and H(M) = M.

The Pedersen scheme is homomorphic: If C1 = gM1hK1 is a commitment
to M1 and C2 = gM2hK2 is a commitment to M2 then C1C2 = gMhK is a
commitment to M = (M1 + M2) mod m, with K = (K1 + K2) mod m.

What is x good for?
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Commitment from DL

Let G = ⟨g⟩ be a cyclic group whose order m is prime. Let H: {0, 1}∗ →
Zm and let CS = (P, C,V) be the following commitment scheme:

Alg P
x $← Zm
h← gx

return h

Alg CH
h (M)

K $← Zm
C ← gH(M)hK

return (K , C)

Alg VH
h (C , M, K )

If (C = gH(M)hK ) then return 1
Else return 0

What is x good for?
Nobody knows x . A party that does know x can easily forge commitments
(win the binding game).
Exercise: given two messages M and M ′, show that an adversary that
knows x can compute K and K ′ such that C is a commitment to both
(K , M) and (K ′, M ′).
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Flipping a common coin

Alice and Bob are getting divorced. They want to flip a common, fair coin
c whose outcome decides which of them keeps the waffle maker.

The naive protocol is for A to flip the coin c and send it to B:

A B

c $←{0, 1} c

But this allows A to dictate the outcome. Unsurprisingly, she gets the
waffle maker.
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Flipping a common coin

Let CS = (P, C,V) be a commitment scheme and consider the following
protocol to flip a common coin c:

A B

a $←{0, 1}
(K , C) $←Cπ(a) C b $←{0, 1}

b

a,K
if Vπ(C , a, K ) = 1 then c ← a ⊕ b

c ← a ⊕ b else c ← ⊥

The hiding security of CS means that B cannot dictate the outcome c.

The binding security of CS means that A cannot dictate the outcome c.
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Homomorphic encryption

Let ES = (K, E ,D) be an encryption scheme, either symmetric or
asymmetric.

We write ek for the encryption key and dk for the decryption key. In the
symmetric case, they are the same.

We define the homomorphic evaluation key hk to be ek in the asymmetric
case and ε in the symmetric case.

Let FC be a set (class) of functions. We write ⟨f ⟩ for a description, for
example as a circuit, of a function f ∈ FC.
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Homomorphic encryption

HE is a homomorphic evaluation algorithm for ES = (K, E ,D) and FC if
for all functions f ∈ FC and all messages M1, . . . , Mm, where m is the
number of inputs of f , the following returns true with probability 1:

For i = 1, . . . , m do Ci
$←Eek(Mi)

C $←HEhk(⟨f ⟩, C1, . . . , Cm) ; M ← Ddk(C)
Return (M = f (M1, . . . , Mm))

That is, C is an encryption of f (M1, . . . , Mm).

Encryption scheme ES is homomorphic for the class of functions FC if
there is an efficient homomorphic evaluation algorithm HE as above.

A fully homomorphic encryption (FHE) scheme is one that is
homomorphic for the class FC of all functions.
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Homomorphic encryption

Q: Isn’t homomorphic evaluation always possible, via

Alg HEhk(⟨f ⟩, C1, . . . , Cm)
For i = 1, . . . , m do Mi ← Ddk(Ci)
M ← f (M1, . . . , Mm) ; C $←Eek(M) ; Return C

A: HE is not given dk. And the requirement that HE is efficient means
that it is infeasible for it to compute dk from hk.
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Security of homomorphic encryption

The primary security requirement for a homomorphic encryption scheme
ES is simply IND-CPA.

Sometimes one wants the scheme to be function hiding (FH), which
means that, on seeing C $←HEhk(⟨f ⟩, Eek(M1), . . . , Eek(Mm)), one does
not learn f . A game-based definition follows.

Sometimes one wants that homomorphically evaluated ciphertexts are
distributed just like real ones, meaning the following are indistinguishable:

C $←HEhk(⟨f ⟩, Eek(M1), . . . , Eek(Mm))
C ′ $←Eek(f (M1, . . . , Mm)).
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Extended key generation

Let ES = (K, E ,D) be an encryption scheme, either symmetric or
asymmetric. We define its extended key-generation algorithm K via:

If ES is symmetric:

Alg K
K $←K
ek ← K ; dk ← K ; hk ← ε
Return (ek,dk,hk)

If ES is asymmetric:

Alg K
(ek,dk) $←K
hk ← ek
Return (ek, dk, hk)

This yields a unified syntax for symmetric and asymmetric schemes.
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Function hiding security

Let ES = (K, E ,D) be an encryption scheme with homomorphic evaluation
algorithm HE for the class of functions FC. Let A be an adversary.

Game FHES,HE

procedure Initialize
b $←{0, 1} ; i ← 0 ;
(ek, dk,hk) $←K ;
Return hk

procedure Finalize(b′)
return (b = b′)

procedure Enc(M)
i ← i + 1 ; Mi ← M ;
Ci

$←Eek(M) ;
Return Ci

procedure LR(i1, . . . , im, f0, f1)
C $←HEhk(⟨fb⟩, C11 , . . . , Cim) ;
Return C
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Function hiding security

In game FHES,HE , any LR query i1, . . . , im, f0, f1 must satisfy the following
conditions:

f0, f1 ∈ FC
m is the number of inputs of both f0 and f1
1 ≤ i1, . . . , im ≤ i
|f0(M11 , . . . , Mim)| = |f1(M11 , . . . , Mim)|.

Definition (fh-advantage)
The fh-advantage of A is

Advfh
ES,HE(A) = 2 · Pr

[
FHA

ES,HE ⇒ true
]
− 1 .

We (informally) say that (ES,HE) is FH-secure for FC if, as usual, any
practical adversary A has low fh-advantage.
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Homomorphic encryption can’t be IND-CCA

If an encryption scheme ES = (K, E ,D) is homomorphic for a non-trivial
class of functions FC then it cannot be IND-CCA-secure.

Why? Assume the adversary A can find M0, M1 and f ∈ FC such that

1. f (M0) ̸= M0 and f (M1) ̸= M1

2. f (M0) ̸= f (M1)

Then it can achieve Advind-cca
ES (A) = 1 via:

adversary A(hk) // hk = ek (asymmetric) or hk = ε (symmetric)
C $← LR(M0, M1) ; C ′ $←HEhk(⟨f ⟩, C) ; M ′ ← Dec(C ′)
If (M ′ = f (M1)) then return 1 else return 0

Condition (1) ensures C ′ ̸= C so the Dec-query is valid. Then (2) ensures
that A’s output is correct.
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Possible usage of homomorphic encryption

Homomorphic encryption allows computing on encrypted data.

A picks keys ek,dk,hk, encrypts her data M1, . . . , Mm under ek to get
C1, . . . , Cm.

A uploads the ciphertexts and hk to in-the-cloud server B.

Later A can send ⟨f ⟩ to B, who computes and returns
C $←HEhk(⟨f ⟩, C1, . . . , Cm).

A now recovers M = f (M1, . . . , Mm)← Ddk(C).
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