CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/csel07-a/

Emmanuel Thomé

May 17, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 14a

PKI and session-key exchange

Public Key Infrastructure (PKI)

Session key exchange

Plan

Public Key Infrastructure (PKI)

Session key exchange

The public key setting

Bob's secret key is sk[B] and its associated public key is pk[B]. The
public key setting assumes Alice is in possession of pk[B].

APK[B] B
— C o=
@ C < Epqg(M) ———— M < Dyg(C) ‘m ﬂ)
v F

g Mo
-~ Vokig)(M,0) —— o éSsk[B](M) i\

Now Alice can encrypt a message M under pk[B] to get a ciphertext C
that B can decrypt using sk[B].

Bob can sign a message M using sk[B] to get signature o that Alice can

verify using pk[B].

But how does Alice get pk[B]?

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 1/38

But who exactly are Alice and Bob?

Typically, as in most uses of TLS, Bob is a server. Its identity B is an
associated domain name or ip address, for example B = google.com.

Alice is a client, also with an associated ip address.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange

2/38

How does A get B's public key?

How about: B runs a prescribed key-generation algorithm /C to generate
(pk[B], sk[B]). It sends (B, pk[B]) to A.

- BPMEL(pk[B],sk[B]) & K

]
1

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 3/38

Entity-in-the-middle attack

A Adversary E
= B,pk[E
X EPMEL KIE), sKIED) & K
A
PN

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 4/38

Entity-in-the-middle attack

A Adversary E

@ EPEL - KE] sKIE]) & K

CEEpg(M) ——— M <+ Dyyg(0)
Vokie)(M, o) +—— Uéssk[E](M)

Adversary E can decrypt ciphertexts intended for B and can forge B’s

signatures. Adversary effectively becomes B.
UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 4/38

PKI, CAs and certificates

Goal: A gets an authentic copy of B’s public key, meaning if pk claims to
come from B, then A has a proof to that effect.

Popular Solution: The PKI (Public Key Infrastructure).
Certificate authority: Trusted entity that provides the above proof.

Certificate: The proof
Note: There are other ways to reach the goal: B could post its public key
on its Facebook; post it on its personal or corporate webpage; include it as

an attachment in its emails; put it on a keyserver like openpgp SKS; hand
it to A in person; ... (what do you think of these methods?)

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 5/38

Let's Encrypt

@ https://letsencrypt.org Y

71 LINUX FOUNDATION COLLABORATIVE PROJECTS

n Let’s Encrypt Documentation Get Help Donate ~ About Us ~ Languages ~
P
/ .
Let's Encrypt is a free, automated, and open
Certificate Authority.

GetStartedJ [Sponsor

) \\)

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 6/38

Some other certificate authorities

Rank Issuer Usage | Market share
1 IdenTrust 20.4% | 39.7%
2 Comodo 17.9% | 34.9%
3 DigiCert 6.3% 12.3%
4 GoDaddy 3.7% | 7.2%
5 GlobalSign 1.8% |3.5%
6 Certum 0.4% | 0.7%
7 Actalis 0.2% | 0.3%
8 Entrust 0.2% | 0.3%
9 Secom 0.1% |0.3%
10 Let's Encrypt 0.1% | 0.2%
1 Trustwave 0.1% | 0.1%
12 | WISeKey Group | <0.1% | 0.1%
13 StartCom <0.1% | 0.1%
14 Network Solutions | <0.1% | 0.1%

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange

7/38

Certificate process

B generates (pk, sk) & K by running a key-generation algorithm K
B sends its identity B, and pk, to CA
CA does identity check to ensure pk is B's

CA issues certificate to B

()
©
©
© B proves knowledge of sk to CA
©
© B sends certificate to A

©

A verifies certificate and extracts B's public key pk

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 8/38

RSA Key generation with openssl

Generate a 3072-bit RSA key, output it to key. pem:

$ openssl genrsa -out key.pem 3072
Generating RSA private key, 3072 bit long modulus (2 primes)

e is 65537 (0x010001)

Extract the public key from the key pair, which can be used in a certificate

$ openssl rsa -in key.pem -outform PEM -pubout -out public.pem
writing RSA key

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 9/38

EC Key generation with openssl

Generate an EC (256-bit) private key with the elliptic curve prime256vi1,
output it to key.pem:

$ openssl ecparam -name prime256vl -genkey -noout -out key.pem

Extract the public key from the key pair, which can be used in a certificate

$ openssl ec -in key.pem -pubout -out public.pem
read EC key

writing EC key

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 10/38

Checks

B sends its identity B (domain name, ip address, email address, ...) and
its public key pk to the certificate authority (CA).

Upon receiving (B, pk) the CA performs some checks to ensure pk is really
B’s key.

Example: If B is a domain name, then the CA sends B a challenge and
checks that it can put it on the webpage of the domain name.

Example: If B is an email address, then the CA sends an email to that
address with a link for B to click to verify that it owns the address.

Example: If B is a passport or driver's license, the CA may be able to
verify it physically, out of band.

Proof of knowledge of secret key: The CA might have B sign or
decrypt something under sk to ensure that B knows sk. This ensures B
has not copied someone else's public key.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 11/38

In openssl: certificate requests

$ openssl req -newkey rsa:3072
Generating a RSA private key

writing new private key to ’privkey.pem’

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

[...]

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

[

MIIDijCCAfICAQAWRTELMAKGA1UEBhMCQVUXEZARBgNVBAgMC1NvbWUtU3RhdGUx
ITAfBgNVBAOMGE1udGVybmVOIFdpZGdpdHMgUHREIExX0ZDCCAaIwDQYJKoZIhvcN
AQEBBQADggGPADCCAYoCggGBAMIx18YOINj9UwmMoFqj4/azaE0wG4DSmD10WpSu
uc00x9QQ20d7LI7cSZOMiXF7U50AQ16VwbdPdU14BCS1£GOvP23kgirz6T4TuOcG
7Yj82LwqucOmhbhhdcPYooLbmxk6xul/QQhz+9eLYZmLfE+n7MzdmRxrsLeIwPFs
IQHQo1StyD02A2JbyA1VVB8GpXe2Jj+vRTT5pWc1Qq5DBTvHbAIOydekswb3hP6 j
GoavlHATP1PostesQCuCGFxjAninpxdePaNe11IMCqPQ2UiT1lssg3KfbueAW0dzS
d19c1yODc1Dh3Emriv2mtRS+SBYN6VptTqc1Uu7DwzEOhbVQkFal0fPaNwaf JTLO
j+4LBbcywEoHD9baA1ZRUr80Dn3SXsY4fTqXqSR2S5mEK1K7GoEmp917kg2mITRO
08eoUbERDEWC1h6THAWIC4u2M7fPbln46AtbbRAOpkbCBTi91qtsPQVE67XiH3uX
1hvCPsUfrD9sYMMjTxg/fsKCUWIDAQABoAAWDQY JKoZIhvcNAQELBQADggGBAEDL
0BbMJQ6gxG5MGA7UwDs7J4I12uZE09YMzgRC1qxzi9Xuh7BU8INkL4hD5XgtHAnGA
ZAEgWKpOTUbqcLZBVRmiAU+nNH+ZgTIcJ7ZJySSQnI+XCi3UsGTus6cpCudikuf9
HoTuil6CI7geUFr5U5701CvbWFNPm+e0fZcVt3iUixwUrMrNLipraMs JuQx7030R
9AohE13QtvJILJysk+XI16X4B9bmm+CJ/YyoMxG+BGNP/0i5WgGyQMg0iKp4nhozC2
WzqxOESECMVZSGuInF7hnIJT1UDUSEgwpjgMMZE ASL/NaZj7£4+KD309C UbZzGw
9zVqjbCuMOweyMNzGTBLuuXvNQVpXPr5 jRs8iVwFW+eQaaWAXQH40x75/DYMo3HH
NFm8drk+1hBzERwdHIHg7127x9epzfxkPwz1h1QMBooQKAQNLQO6c3DqviRyda7z
q/IBpoZpM35PeqsYS8IUCceI jwYAMEGmPQZAFsbOVgW1bmK/fUB1UF9TGJhUuQ==

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange

key + identity

certificate request

12/38

In openssl: certificate requests

$ openssl req -newkey ec:<(openssl ecparam -name prime256v1)
Generating an EC private key

writing new private key to ’privkey.pem’

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

[EPS

Country Name (2 letter code) [AU]: k . .
ey + identity

State or Province Name (full name) [Some-Statel]:

[N

————— BEGIN CERTIFICATE REQUEST----- =
MIH/MIGnAgEAMEUxCzAJBgNVBAYTAKFVMRMWEQYDVQQIDApTb211LVNOYXRIMSEwW
HwYDVQQKDBhJbnR1cm51dCBXaWRnaXRzIFBOeSBMdGQwWTATBgcqhk jOPQIBBggq H -
hkjOPQMBBWNCAAStLsJ/rKbthNWCo01RF300ZvCVZK0yS60TmJ0001H1 /PXWqL1D ce rt I fl Cate req u eSt
fLNPTGEmuEVdD8IkcH7INzfkz3VEOOAYsbHZoAAwCgYIKoZIzjOEAWIDRWAWRAIg
ZzQRe1h42I601azt+qN2ymx20qe81kJraCEtAkBmp4ICTIA6KAILOwBnBlpk2+v73

L1cNOE9k+eFsz189yVJSaazG

Elliptic curve keys and certificate requests are shorter than for RSA,
because the DLog problem is very hard on elliptic curves, and 256-bit keys
are safe enough.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 13/38

Certificate Issuance

Once CA is convinced that pk belongs to B, it forms a certificate
CERT[B] = (CERTDATA, o),

where o is the CA's signature on CERTDATA, computed under the CA’s
secret key sk[CA], and CERTDATA contains:

© B's public key pk, and its type (RSA, EC, ...)
© Identity B of B

© Name of CA
©
()

Expiry date of certificate

The certificate CERT|[B] is returned to B.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 14/38

Certificate usage

B can send CERT|[B] to A, who is assumed to have the CA’s public key
pk[CA], and now will:

e Parse CERT[B] as (CERTDATA, ¢) + CERT|B]
© Check that V,1jca)(CERTDATA, o) =1

© Extract (pk, B,expiry,...) + CERTDATA

© Check certificate has not expired

© Check that B is the desired identity

e ...

If all is well, A accepts the certificate and is ready to use the public key pk
therein.

How does A get pk[CA]? CA public keys are embedded in software such
as your browser, or, on Apple, in the keychain.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 15/38

Certificate hierarchies

CA(USA) CERT/[Alice]

/N CERT[CA(USA) : CA(Calif)]
CA(Calif) CA(Mass) CERT[CA(Calif) : CA(SD)]

/ CERT[CA(SD) : CA(UCSD)]
CA/(SD) CERT[CA(UCSD) : Alice]
CA(UCSD)
|

Alice

CERT[X : Y] = ((pk[Y], Y, -.), Saxpxq((PK[Y], Y. 2)))

To verify CERT[Alice] you need only pk[CA[USA]].

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange

16/38

Why certificate hierarchies?

© It is easier for CA(UCSD) to check Alice's identity (and issue a
certificate) than for CA(USA) since Alice is on UCSD's payroll and
UCSD already has a lot of information about her.

© Spreads the identity-check and certification job to reduce work for
individual CAs

© Browsers need to have fewer embedded public keys. (Only root CA
public keys needed.)

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 17/38

Certificates on Mac: keychain

@ Keychain Access File Edit View Window Help

[+ @
m _Keycmms g 2uth.ucsd.edu
s login ‘ Issued by: InCommon RSA Server CA
& Local ltems Expires: Sunday, April 19, 2020 at 4:59:59 PM Pacific Daylight Time
& System @ This certificate is marked as trusted for this account

@ System Roots

AddTrust External CA Root

auth.resnet.ucsb.edu

auth.ucsd.edu

auth.ucsd.edu
com.apple.idms.appleid.prd.46414e6a564e2746958484d6d4475473070582b2b513d3d
com.apple.idms.appleid.prd.46414e6a564e2746958484d6d4475473070582b2b513d3d
InCommon RSA Server CA

InCommon Server CA

member: B3F2F72E-E369-43F3-97C6-B51C88991470 76EF51EC-49C1-47F6-A069-EF6FED3300FF
ucsb-secure wireless.ucsb.edu

USERTrust RSA Certification Authority

USERTrust RSA Certification Authority

wwiw.schlossbensberg.com

Category
R Al ltems
/.. Passwords
Il Ssecure Notes
B My Certificates
? Keys
B Certificates

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange

A particular certificate

auth.ucsd.edu
Issued by: InCommon RSA Server CA
Sunday, April 19, 2020 at 4:59:69 PM Pacific Daylight Time
tificate is mat

o
Cortat

Trust
Details
Subject Name
Country or Region U
Postal Code 92093
state/Province C)
Locality La Jolia
Street Address 9500 Gilman Drive
Organization University of California, San Diego
Organizational Unit UCSD
Common Name authucsd.edu

Issuer Name
Country or Region
State/Province
ity Ann Arbor
Organization Internet2.
Organizational Unit InCommon
Common Name InCommon RSA Server CA

Serial Number 00 B1 28 07 A2 0D 08 E2 27 6E A0 9C 97 47 DO DF 87
Version
Signature Algorithm SHA-256 with RSA Encryption (1.2.840.11354911.11)
Parameters None

Not Valid Before Thursday, April 19, 2018 at 5:00:00 PM Pacific Daylight Time
Not Valid After Sunday, April 19, 2020 at 4:59:59 PM Pacific Daylight Time

Public Key Info
Algorithm RSA Encryption (1.2.840.113549.1
Parameters None
Public Key 256 bytes : C4 AD 44 82 D1 A1 84 OF ..
Exponent 65537
Key Size 2,048 bits
Key Usage Encrypt, Verify, Wrap, Derive

Signature 256 bytes : 41017D F8 D1 B0 AC E8

Extension Key Usage (2.5.20.15)
Critical YES
Usage Diaital Sianature. Kev Encipherment

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 19/38

Revocation

Suppose B wishes to revoke its certificate CERT[B] = (CERTDATA, o),
perhaps because its secret key sk, corresponding to the pk in
CERTDATA, was compromised. Then:

© B sends CERT[B] and revocation request to CA, signed under sk

© CA verifies the signature under pk

e CA puts (CERT][B], RevocationDate) on its Certificate Revocation
List (CRL)

© This list is disseminated.

Before A accepts B's certificate, A should check that it is not on the CRL.

The OCSP (Online Certificate Status Protocol) is one way to do this.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 20/38

Revocation Issues

© May 13: B's secret key compromised
e May 16: B's CERT|[B] revoked
© May 17: A sees CRL

CERT|B] might be used in the May 13-16 range, compromising security.

In practice, CRLs are large and revocation is a problem.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 21/38

Certificate transparency (link)

Who watches the watchers?

Historically, user agents determined if CAs were

trustworthy through audits by credentialled third

parties. But these tended to look at operational

practices and historical performance rather than

technical correctness. Such audits can’t catch

everything. Before CT, there could be a significant tim

lag between a certificate being wrongly issued, and a

CA doing something about it.

That's where
Certificate Transparency
comesiin.

Independent, reliable logs

CT depends on independent, reliable logs because it is a
distributed ecosystem. Built using Merkle trees, logs

are publicly verifiable, append-only, and tamper-proof.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 22/38

https://certificate.transparency.dev/

PGP SKS keyservers

SKS OpenPGP Key server
Extract a key

You can find a key by typing in some words that appear in the userid (name,
email, etc.) of the key you're looking for, or by typing in the keyid in hex format
(0x...")

—Search for a public key

Sting
Show PGP Fingerprints

Show SKS full-key hashes

Get regular index of matching keys
Get verbose index of matching keys
Retrieve ascii-armored keys
Retrieve keys by full-key hash

[eNoNONeNulu]

Reset || Search for a key

Submit a key

You can submit a key by simply pasting in the ASCII-armored version of your
key and clicking on submit.

Reset || Submit this key

SKS is a new OpenPGP keyserver. The main innovation of SKS is that it includes
a highly-efficient reconciliation algorithm for keeping the keyservers
synchronized.

SKS statistics

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 23/38

Plan

Public Key Infrastructure (PKI)

Session key exchange

Session key exchange

A large part of secure communication over the Internet is through
protocols like TLS (https).

Here, public-key cryptography is not used to directly secure data.
Rather, public-key cryptography is used in a session-key exchange that
provides (client) A and (server) B with a shared (symmetric) session key

K.

Data is then secured under K using an authenticated encryption scheme
A€ = (K, E,D):

AK

@ M « Dk(C) < C & Ex(M)

s & B
UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 24/38

» \
?-

Session key exchange

Why session keys, as opposed to directly securing data with public-key
cryptography?

© One reason is performance: symmetric cryptography is more efficient
than asymmetric cryptography.

We mentioned that as one of the arguments in favor of hybrid
encryption.

© More fundamentally, it reflects the Internet architecture in which A
and B will engage in multiple, sometimes concurrent communication
sessions.

The session key exchange paradigm gives each such session a fresh
session key, making its security independent of that of other sessions.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 25/38

Recall Diffie-Hellman Key Exchange

Let G = (g) be a cyclic group of order m in which the CDH problem is
hard. Let H: {0,1}* — {0,1}* be a hash function.

A B
s AX
. XLy X~ g ——— =
N B,Y s ()
LY —)Z(-%(,;,Yng =
- —
ah &H»_
Y¥X=(g") =g =(g") =X
~—
L

This enables A and B to agree on the common k-bit key K = H(L) =
H(g™).

So is this a suitable session key exchange protocol? Are we done?

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 26/38

DH Key Exchange is secure under Passive Attack

B

s AX
X&—Lm; X — g8 —— =
B,Y (NG

LY " yEZmY—g
y
L+ X @n

A passive adversary is one that observes the communication, acquiring
X =g~ and Y = g%, and wants to compute K = H(g*). But to do so
requires solving the CDH problem, which is here assumed hard.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 27/38

DH Key Exchange is secure under Passive Attack

»
')D) oy}

A
s AX
.\ XLy X~ g ——
B,Y
&\ LY «+—— yEZm Y g
: L+ XY
i M

A passive adversary is one that observes the communication, acquiring
X =g~ and Y = g%, and wants to compute K = H(g*). But to do so
requires solving the CDH problem, which is here assumed hard.

However, the problem of authenticity remains (recall that KEMs assumed
authenticity of ek! (ek = the public key).

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 27/38

DH Key Exchange is insecure under Active Attack

Entity-in-the-middle attack:

A
s A X
. XLy X~ g ——
B,Y
. LY " yEZm Y g
L XY
s

© Adversary E impersonates B.
© A thinks it shares K = H(L) with B, but in fact A shares K with E.

If A now encrypts, under K, a message intended for B, then E can decrypt
the ciphertext and recover the message.

DH in itself does not solve the session key exchange problem.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 28/38

Session key exchange requirements

We consider the unilateral, public-key setting. Here B has a certificate
CERT{B] and corresponding public and secret keys pk[B], sk[B]. A is not
assumed to have a certificate or corresponding keys.

This is the most common setting for TLS, where B is a server like
google.com and A is a client.

The session key exchange should result in a session key K, known to both
A and B, and satisfying:

© Authenticity: A really shares K with B, not some other entity

© Secrecy: The adversary does not know K.
This must hold even if the adversary knows session keys of other sessions
and is active, meaning in complete control of the communication.
These basic requirements are supplemented by various others including
forward secrecy, anonymity, ...

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 29/38

Session key exchange secrecy

Secrecy: The adversary E cannot distinguish the true session key K from a
random string of the same length.

Suppose the protocol terminates and a party X outputs a session key K.
Now we let

Ki <+ K; Ko < {0,1}/%I; game returns Ky or Ki. Adversary must tell
which.

Then the adversary's advantage should be small.

This must hold even if the adversary has obtained the session key of all
other instances except the one partnered with X, and when the adversary
is active, in charge of all communication.

Warning: This is not a formal definition, just a glimpse of it. The
IND-CCA notion for KEMs comes closer.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 30/38

Session key exchange landscape

Session-key exchange is a subtle problem.

Easy to specify protocols, hard to get them right. One very hard aspect is
that an active adversary may have multiple concurrent sessions.

Many security requirements, many proposed protocols, many attacks.

Definitions and provable security treatment started in the mid 1990s and
continued well into the 2000s.

Today, standards look for proof-based support.

The TLS 1.3 session key exchange protocol is based on the Sigma
(sign-and-mac) protocol of [Kr03].

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 31/38

Plan

Session key exchange

Key exchange protocols

Protocol KE1

A

A,Ra

B,Rg,CERT][B],Sigg(RallRs) ()

6

2 C < Encg(L)

.

C,MACy(RallRg|IC)

:: ()g (o]

Ra, R, called nonces, are randomly chosen by the parties.

Sigg(X) is B's signature on X, computed under sk[B] and verifiable under
the pk[B] that is in CERT[B].

L is randomly chosen by A. Session key is K = Hi(L) and MAC key is
M = Hj(L) where Hy, H; are public hash functions.

Encg(L) is encryption of L under B's public key pk[B]. Decryption uses
sk[B].

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 32/38

Identity mis-binding attack on KE1

B
E,Ra

B,Rg,CERT(B],Sigg(RallRs) ga'
)

o

A,Ra

B,Rp,CERT(B],Sigg(RallRg)

C,MACy(RallRglIC) C,MACy(RallRglIC)

i |

A accepts B and thinks it shares K with B.
But B accepts E and thinks it shares K with E.

This is viewed as a problem, even though E does not know K, because
there is a mis-binding of identities.

A good definition would view this as a successful attack.

A good protocol should ensure that if A accepts B with K, then B either
accepts A with K, or accepts nobody with K or a key related to K.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 33/38

Protocol KE2

Identity mis-binding is circumvented by inclusion of identities in the
signature and the MAC, and addition of a MAC from the server:

A,Ra

B,Rg,CERT|B],Sigg(Al||B||Ral|Rs)

C,MAC (O[|Al|Bl|Ral| 5| C)

MACw (1[|AllB|[RallRs)

(% 4 » \
fv'] '\ J) m

Session key is K = Hi(A||B||Ral|Rg||L) and MAC key is
M = Ha(A[|B||RallRs||L)-

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange

34/38

KE2 is not forward secure

A,Ra ﬁ

B,Rg,CERT[B],Sigg (Al Bl|RallRs) n

u}@

C,MACw (0| Al|B||RallRslC)

C <& Encp(L)
MACu(1[|Al|BI|Ral|Rg)

Cs

Cg & Enck(X)

Apr. 17: Adversary E records above flows.
May. 13: E compromises B's system and obtains sk[B]
May. 17: B revokes CERT|[B], and thus pk[B]

However, at any time after May. 13, E can obtain session key K and
decrypt Cp to obtain X via: K < Decyg)(C) ; X < Deck(Cg).

This is a violation of what's called forward secrecy.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 35/38

Forward secrecy

Definition (Forward Secrecy)

Forward secrecy asks that exposure of sk[B] does not allow recovery of
session keys K exchanged prior to the time of exposure.

FS is achieved using the DH key exchange inside the session key exchange
protocol.

Forward secrecy is considered necessary in modern session key exchange,
and is present in the TLS 1.3 protocol.

Session-key exchange protocols using DH for forward secrecy are often
called authenticated DH key exchange protocols.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 36/38

Protocol KE3

Let G = (g) be a cyclic group of order m in which the CDH problem is
hard.

@ B.g® CERT(B] Sigs (A B&”|e®). MACK(1]A[Blg7e®) B &
-

MACw(0]|Al|Bllg?llg") '1

Here a, b <> Z, are chosen by A, B, respectively, and g2, g? play the role
of nonces.

Sigg(X) is B's signature on X, computed under sk[B] and verifiable under
the pk[B] that is in CERT[B].

Let L = g2 be the DH key. Then session key is K = H1(A| B||lg?||g”||L)
and MAC key is M = Hy(A||B||g?||g”||L) where H1, H, are as before.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 37/38

Protocol KE3

Ag?
@ B,g®,CERT[B],Sigg(AllBllg?llg®),MACK (1Al Bllg?|lg®)
]

MAC,(0]|Al| B||g?||g?)
ah

L
There is no public-key encryption used here, only signatures.

Compromise of sk[B] only gives E the ability to forge signatures. Even
given sk[B], it cannot recover the DH key L = g2 from a prior exchange,

and thus cannot distinguish from random the session key
K =H1(A|Blg?llg"|L).

Accordingly this provides forward secrecy.

This is roughly the core of the unilateral session-key exchange in the TLS
1.3 handshake.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 38/38

	PKI and session-key exchange
	Public Key Infrastructure (PKI)
	Session key exchange
	Key exchange protocols

