
CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 17, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 14a

PKI and session-key exchange

Public Key Infrastructure (PKI)

Session key exchange

Plan

Public Key Infrastructure (PKI)

Session key exchange

The public key setting

Bob’s secret key is sk[B] and its associated public key is pk[B]. The
public key setting assumes Alice is in possession of pk[B].

Apk[B] B

C $←Epk[B](M) C M ← Dsk[B](C)

Vpk[B](M, σ)
M,σ

σ $←Ssk[B](M)

Now Alice can encrypt a message M under pk[B] to get a ciphertext C
that B can decrypt using sk[B].

Bob can sign a message M using sk[B] to get signature σ that Alice can
verify using pk[B].

But how does Alice get pk[B]?
UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 1/38

But who exactly are Alice and Bob?

Typically, as in most uses of TLS, Bob is a server. Its identity B is an
associated domain name or ip address, for example B = google.com.

Alice is a client, also with an associated ip address.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 2/38

How does A get B’s public key?

How about: B runs a prescribed key-generation algorithm K to generate
(pk[B], sk[B]). It sends (B, pk[B]) to A.

B,pk[B]
(pk[B], sk[B]) $←K

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 3/38

Entity-in-the-middle attack

A Adversary E

B,pk[E]
(pk[E], sk[E]) $←K

So:

C $←Epk[E](M) C M ← Dsk[E](C)

Vpk[E](M, σ)
M,σ

σ $←Ssk[E](M)

Adversary E can decrypt ciphertexts intended for B and can forge B’s
signatures. Adversary effectively becomes B.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 4/38

Entity-in-the-middle attack

A Adversary E

B,pk[E]
(pk[E], sk[E]) $←K

So:

C $←Epk[E](M) C M ← Dsk[E](C)

Vpk[E](M, σ)
M,σ

σ $←Ssk[E](M)

Adversary E can decrypt ciphertexts intended for B and can forge B’s
signatures. Adversary effectively becomes B.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 4/38

PKI, CAs and certificates

Goal: A gets an authentic copy of B’s public key, meaning if pk claims to
come from B, then A has a proof to that effect.

Popular Solution: The PKI (Public Key Infrastructure).

Certificate authority: Trusted entity that provides the above proof.

Certificate: The proof

Note: There are other ways to reach the goal: B could post its public key
on its Facebook; post it on its personal or corporate webpage; include it as
an attachment in its emails; put it on a keyserver like openpgp SKS; hand
it to A in person; ... (what do you think of these methods?)

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 5/38

Let’s Encrypt

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 6/38

Some other certificate authorities

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 7/38

Certificate process

B generates (pk, sk) $←K by running a key-generation algorithm K
B sends its identity B, and pk, to CA
CA does identity check to ensure pk is B’s
B proves knowledge of sk to CA
CA issues certificate to B
B sends certificate to A
A verifies certificate and extracts B’s public key pk

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 8/38

RSA Key generation with openssl

Generate a 3072-bit RSA key, output it to key.pem:

$ openssl genrsa -out key.pem 3072
Generating RSA private key, 3072 bit long modulus (2 primes)
........................++++
.................................++++
e is 65537 (0x010001)

Extract the public key from the key pair, which can be used in a certificate

$ openssl rsa -in key.pem -outform PEM -pubout -out public.pem
writing RSA key

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 9/38

EC Key generation with openssl

Generate an EC (256-bit) private key with the elliptic curve prime256v1,
output it to key.pem:

$ openssl ecparam -name prime256v1 -genkey -noout -out key.pem

Extract the public key from the key pair, which can be used in a certificate

$ openssl ec -in key.pem -pubout -out public.pem
read EC key
writing EC key

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 10/38

Checks
B sends its identity B (domain name, ip address, email address, ...) and
its public key pk to the certificate authority (CA).

Upon receiving (B, pk) the CA performs some checks to ensure pk is really
B’s key.

Example: If B is a domain name, then the CA sends B a challenge and
checks that it can put it on the webpage of the domain name.

Example: If B is an email address, then the CA sends an email to that
address with a link for B to click to verify that it owns the address.

Example: If B is a passport or driver’s license, the CA may be able to
verify it physically, out of band.

Proof of knowledge of secret key: The CA might have B sign or
decrypt something under sk to ensure that B knows sk. This ensures B
has not copied someone else’s public key.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 11/38

In openssl: certificate requests
$ openssl req -newkey rsa:3072
Generating a RSA private key
..............++++
...++++
writing new private key to ’privkey.pem’
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:
[...]
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
[...]
-----BEGIN CERTIFICATE REQUEST-----
MIIDijCCAfICAQAwRTELMAkGA1UEBhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUx
ITAfBgNVBAoMGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDCCAaIwDQYJKoZIhvcN
AQEBBQADggGPADCCAYoCggGBAMJxl8Y0INj9UwmMoFqj4/azaEOwG4DSmDlOWp8u
uc0ox9QQ20d7LI7cSZOMiXF7U5OAQl6VwbdPdU14BCSlfG9vP23kgirz6T4TuOcG
7Yj82LwqucOmhbhhdcPYooLbmxk6xu1/QQhz+9eLYZmLfE+n7MzdmRxrsLeIwPFs
IQHQo1StyDO2A2JbyA1VVB8GpXe2Jj+vRTT5pWc1Qq5DBTvHb4I0ydekswb3hP6j
GoavlHATPlPostesQCuCGFxjAn1npxdePaNe11IMCqPQ2UiTlssg3KfbueAWOdzS
dl9cly0DclDh3Emriv2mtRS+SBYN6VptTqc1Uu7DwzEOhbVQkFa1OfPaNwafJTL0
j+4LBbcywEoHD9baA1ZRUr80Dn3SXsY4fTqXqSR2S5mEK1K7GoEmp917kg2mITRO
o8eoUbERDEWC1h6IHAw9C4u2M7fPbln46AtbbRAOpkbCBTi9IqtsPQvE67XiH3uX
1hvCPsUfrD9sYMMjTxg/fsKCUwIDAQABoAAwDQYJKoZIhvcNAQELBQADggGBAEbL
OBbMJQ6gxG5MGA7UwDs7J4I2uZEo9YMzgRClqxzi9Xuh7BU8JNkL4hD5XgtHAn6A
ZAEgWKp0TUbqcLZBVRmiAU+nNH+ZgTIcJ7ZJySSQnI+XCi3UsGTus6cpCudikuf9
HoTuil6CI7geUFr5U57olCvbWFNPm+eOfZcVt3iUixwUrMrNLipraMsJwQx703oR
9AohE13QtvJLJysk+XI6X4B9bmm+CJ/YyoMxG+BGNP/0i5WgGyQMgOiKp4nhozC2
WzqxOE5ECmVzSGuInF7hnIJT1UDUsEgwpjgMMZfA9L/NaZj7f4+KD3O9CjUbZzGw
9zVqjbCuMOweyMNzGTBLuuXvNQVpXPr5jRs8iVwFW+eQaaWAXQH4Ox75/DYMo3HH
NFm8drk+lhBzERwdHIHg7127x9epzfxkPwz1h1QMBooQKAqNLQO6c3DqvfRyda7z
q/IBpoZpM35PeqsYS8IUCceIjwYAM5GmpQZ4Fsb9VgW1bmK/fUBlUf9TGJhUwQ==
-----END CERTIFICATE REQUEST-----

key + identity
=

certificate request

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 12/38

In openssl: certificate requests

$ openssl req -newkey ec:<(openssl ecparam -name prime256v1)
Generating an EC private key
writing new private key to ’privkey.pem’
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:
[...]
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
[...]
-----BEGIN CERTIFICATE REQUEST-----
MIH/MIGnAgEAMEUxCzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEw
HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggq
hkjOPQMBBwNCAAStLsJ/rKbthNWCo01RF3O0ZvCVZK0yS60TmJ0o0lHl/PXWqLlD
fLNPTGEmuEVdD8IkcH7INzfkz3VEO0AYsbHZoAAwCgYIKoZIzj0EAwIDRwAwRAIg
ZzQRe1h42I6Olazt+qN2ymx20qe81kJraCEtAkBmp4ICIA6kAIL9wBnBlpk2+v73
L1cN0E9k+eFszl89yVJSaazG
-----END CERTIFICATE REQUEST-----

key + identity
=

certificate request

Elliptic curve keys and certificate requests are shorter than for RSA,
because the DLog problem is very hard on elliptic curves, and 256-bit keys
are safe enough.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 13/38

Certificate Issuance

Once CA is convinced that pk belongs to B, it forms a certificate
CERT[B] = (CERTDATA, σ),

where σ is the CA’s signature on CERTDATA, computed under the CA’s
secret key sk[CA], and CERTDATA contains:

B’s public key pk, and its type (RSA, EC, ...)
Identity B of B
Name of CA
Expiry date of certificate
...

The certificate CERT[B] is returned to B.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 14/38

Certificate usage

B can send CERT[B] to A, who is assumed to have the CA’s public key
pk[CA], and now will:

Parse CERT[B] as (CERTDATA, σ)← CERT[B]
Check that Vpk[CA](CERTDATA, σ) = 1
Extract (pk, B, expiry, . . .)← CERTDATA
Check certificate has not expired
Check that B is the desired identity
. . .

If all is well, A accepts the certificate and is ready to use the public key pk
therein.

How does A get pk[CA]? CA public keys are embedded in software such
as your browser, or, on Apple, in the keychain.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 15/38

Certificate hierarchies

CA(USA)

CA(Calif) CA(Mass)

CA(SD)

CA(UCSD)

Alice

CERT[Alice]

CERT[CA(USA) : CA(Calif)]
CERT[CA(Calif) : CA(SD)]
CERT[CA(SD) : CA(UCSD)]
CERT[CA(UCSD) : Alice]

CERT[X : Y] = ((pk[Y], Y , . . .),Ssk[X]((pk[Y], Y , . . .)))

To verify CERT[Alice] you need only pk[CA[USA]].

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 16/38

Why certificate hierarchies?

It is easier for CA(UCSD) to check Alice’s identity (and issue a
certificate) than for CA(USA) since Alice is on UCSD’s payroll and
UCSD already has a lot of information about her.
Spreads the identity-check and certification job to reduce work for
individual CAs
Browsers need to have fewer embedded public keys. (Only root CA
public keys needed.)

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 17/38

Certificates on Mac: keychain

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 18/38

A particular certificate

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 19/38

Revocation

Suppose B wishes to revoke its certificate CERT[B] = (CERTDATA, σ),
perhaps because its secret key sk, corresponding to the pk in
CERTDATA, was compromised. Then:

B sends CERT[B] and revocation request to CA, signed under sk
CA verifies the signature under pk
CA puts (CERT[B], RevocationDate) on its Certificate Revocation
List (CRL)
This list is disseminated.

Before A accepts B’s certificate, A should check that it is not on the CRL.

The OCSP (Online Certificate Status Protocol) is one way to do this.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 20/38

Revocation Issues

May 13: B’s secret key compromised
May 16: B’s CERT[B] revoked
May 17: A sees CRL

CERT[B] might be used in the May 13-16 range, compromising security.

In practice, CRLs are large and revocation is a problem.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 21/38

Certificate transparency (link)

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 22/38

https://certificate.transparency.dev/

PGP SKS keyservers

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 23/38

Plan

Public Key Infrastructure (PKI)

Session key exchange

Session key exchange

A large part of secure communication over the Internet is through
protocols like TLS (https).

Here, public-key cryptography is not used to directly secure data.

Rather, public-key cryptography is used in a session-key exchange that
provides (client) A and (server) B with a shared (symmetric) session key
K .

Data is then secured under K using an authenticated encryption scheme
AE = (K, E ,D):

AK BK

M ← DK (C) C C $←EK (M)

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 24/38

Session key exchange

Why session keys, as opposed to directly securing data with public-key
cryptography?

One reason is performance: symmetric cryptography is more efficient
than asymmetric cryptography.

We mentioned that as one of the arguments in favor of hybrid
encryption.

More fundamentally, it reflects the Internet architecture in which A
and B will engage in multiple, sometimes concurrent communication
sessions.

The session key exchange paradigm gives each such session a fresh
session key, making its security independent of that of other sessions.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 25/38

Recall Diffie-Hellman Key Exchange

Let G = ⟨g⟩ be a cyclic group of order m in which the CDH problem is
hard. Let H: {0, 1}∗ → {0, 1}k be a hash function.

A B
x $← Zm; X ← gx A,X

L← Y x B,Y
y $← Zm; Y ← gy

L← X y

Y x = (gy)x = gxy︸︷︷︸
L

= (gx)y = X y

This enables A and B to agree on the common k-bit key K = H(L) =
H(gxy).

So is this a suitable session key exchange protocol? Are we done?

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 26/38

DH Key Exchange is secure under Passive Attack

A B
x $← Zm; X ← gx A,X

L← Y x B,Y
y $← Zm; Y ← gy

L← X y

A passive adversary is one that observes the communication, acquiring
X = gx and Y = gy , and wants to compute K = H(gxy). But to do so
requires solving the CDH problem, which is here assumed hard.

However, the problem of authenticity remains (recall that KEMs assumed
authenticity of ek! (ek = the public key).

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 27/38

DH Key Exchange is secure under Passive Attack

A B
x $← Zm; X ← gx A,X

L← Y x B,Y
y $← Zm; Y ← gy

L← X y

A passive adversary is one that observes the communication, acquiring
X = gx and Y = gy , and wants to compute K = H(gxy). But to do so
requires solving the CDH problem, which is here assumed hard.
However, the problem of authenticity remains (recall that KEMs assumed
authenticity of ek! (ek = the public key).

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 27/38

DH Key Exchange is insecure under Active Attack

Entity-in-the-middle attack:

A E
x $← Zm; X ← gx A,X

L← Y x B,Y
y $← Zm; Y ← gy

L← X y

Adversary E impersonates B.
A thinks it shares K = H(L) with B, but in fact A shares K with E .

If A now encrypts, under K , a message intended for B, then E can decrypt
the ciphertext and recover the message.

DH in itself does not solve the session key exchange problem.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 28/38

Session key exchange requirements

We consider the unilateral, public-key setting. Here B has a certificate
CERT[B] and corresponding public and secret keys pk[B], sk[B]. A is not
assumed to have a certificate or corresponding keys.

This is the most common setting for TLS, where B is a server like
google.com and A is a client.

The session key exchange should result in a session key K , known to both
A and B, and satisfying:

Authenticity: A really shares K with B, not some other entity
Secrecy: The adversary does not know K .

This must hold even if the adversary knows session keys of other sessions
and is active, meaning in complete control of the communication.

These basic requirements are supplemented by various others including
forward secrecy, anonymity, ...

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 29/38

Session key exchange secrecy

Secrecy: The adversary E cannot distinguish the true session key K from a
random string of the same length.

Suppose the protocol terminates and a party X outputs a session key K .
Now we let

K1 ← K ; K0
$←{0, 1}|K |; game returns K0 or K1. Adversary must tell

which.

Then the adversary’s advantage should be small.

This must hold even if the adversary has obtained the session key of all
other instances except the one partnered with X , and when the adversary
is active, in charge of all communication.

Warning: This is not a formal definition, just a glimpse of it. The
IND-CCA notion for KEMs comes closer.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 30/38

Session key exchange landscape

Session-key exchange is a subtle problem.

Easy to specify protocols, hard to get them right. One very hard aspect is
that an active adversary may have multiple concurrent sessions.

Many security requirements, many proposed protocols, many attacks.

Definitions and provable security treatment started in the mid 1990s and
continued well into the 2000s.

Today, standards look for proof-based support.

The TLS 1.3 session key exchange protocol is based on the Sigma
(sign-and-mac) protocol of [Kr03].

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 31/38

Plan

Session key exchange
Key exchange protocols

Protocol KE1

A B
A,RA

B,RB ,CERT[B],SigB(RA∥RB)

C $← EncB(L)
C ,MACM(RA∥RB∥C)

RA, RB, called nonces, are randomly chosen by the parties.

SigB(X) is B’s signature on X , computed under sk[B] and verifiable under
the pk[B] that is in CERT[B].

L is randomly chosen by A. Session key is K = H1(L) and MAC key is
M = H2(L) where H1, H2 are public hash functions.

EncB(L) is encryption of L under B’s public key pk[B]. Decryption uses
sk[B].

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 32/38

Identity mis-binding attack on KE1

A E B
A,RA E ,RA

B,RB ,CERT[B],SigB (RA∥RB) B,RB ,CERT[B],SigB (RA∥RB)

C,MACM (RA∥RB∥C) C,MACM (RA∥RB∥C)

A accepts B and thinks it shares K with B.

But B accepts E and thinks it shares K with E .

This is viewed as a problem, even though E does not know K , because
there is a mis-binding of identities.

A good definition would view this as a successful attack.

A good protocol should ensure that if A accepts B with K , then B either
accepts A with K , or accepts nobody with K or a key related to K .

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 33/38

Protocol KE2

Identity mis-binding is circumvented by inclusion of identities in the
signature and the MAC, and addition of a MAC from the server:

A B
A,RA

B,RB ,CERT[B],SigB(A∥B∥RA∥RB)

C $← EncB(L)
C ,MACM(0∥A∥B∥RA∥RB∥C)

MACM(1∥A∥B∥RA∥RB)

Session key is K = H1(A∥B∥RA∥RB∥L) and MAC key is
M = H2(A∥B∥RA∥RB∥L).

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 34/38

KE2 is not forward secure

A,RA

B,RB ,CERT[B],SigB(A∥B∥RA∥RB)

C $← EncB(L)
C ,MACM(0∥A∥B∥RA∥RB∥C)

MACM(1∥A∥B∥RA∥RB)

CB CB
$← EncK (X)

Apr. 17: Adversary E records above flows.
May. 13: E compromises B’s system and obtains sk[B]
May. 17: B revokes CERT[B], and thus pk[B]

However, at any time after May. 13, E can obtain session key K and
decrypt CB to obtain X via: K ← Decsk[B](C) ; X ← DecK (CB).

This is a violation of what’s called forward secrecy.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 35/38

Forward secrecy

Definition (Forward Secrecy)
Forward secrecy asks that exposure of sk[B] does not allow recovery of
session keys K exchanged prior to the time of exposure.

FS is achieved using the DH key exchange inside the session key exchange
protocol.

Forward secrecy is considered necessary in modern session key exchange,
and is present in the TLS 1.3 protocol.

Session-key exchange protocols using DH for forward secrecy are often
called authenticated DH key exchange protocols.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 36/38

Protocol KE3

Let G = ⟨g⟩ be a cyclic group of order m in which the CDH problem is
hard.

A,ga

B,gb ,CERT[B],SigB(A∥B∥ga∥gb),MACM(1∥A∥B∥ga∥gb)

MACM(0∥A∥B∥ga∥gb)

Here a, b $← Zm are chosen by A, B, respectively, and ga, gb play the role
of nonces.

SigB(X) is B’s signature on X , computed under sk[B] and verifiable under
the pk[B] that is in CERT[B].

Let L = gab be the DH key. Then session key is K = H1(A∥B∥ga∥gb∥L)
and MAC key is M = H2(A∥B∥ga∥gb∥L) where H1, H2 are as before.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 37/38

Protocol KE3
A,ga

B,gb ,CERT[B],SigB(A∥B∥ga∥gb),MACM(1∥A∥B∥ga∥gb)

MACM(0∥A∥B∥ga∥gb)

There is no public-key encryption used here, only signatures.

Compromise of sk[B] only gives E the ability to forge signatures. Even
given sk[B], it cannot recover the DH key L = gab from a prior exchange,
and thus cannot distinguish from random the session key
K = H1(A∥B∥ga∥gb∥L).

Accordingly this provides forward secrecy.

This is roughly the core of the unilateral session-key exchange in the TLS
1.3 handshake.

UCSD CSE107: Intro to Modern Cryptography; PKI and session-key exchange 38/38

	PKI and session-key exchange
	Public Key Infrastructure (PKI)
	Session key exchange
	Key exchange protocols

