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Handwritten signatures
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Handwritten signatures are in common use to sign documents, checks, . . .
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There are many ways to create digital versions of handwritten signatures.
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Handwritten signatures
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Problem: A digitized handwritten signature is easily copied, leading to
forgery.

To be secure, a digital signature must depend not only on the signer, but
also on the message being signed.
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Digital signatures syntax and correctness

A digital signature scheme DS = (K,S,V) consists of three algorithms
that operate as follows:

(vk, sk) $←K — generate a verification key vk and matching signing
key sk

σ $←Ssk(M) — apply signing algorithm S to signing key sk and
message M to get a signature σ. Algorithm S may be randomized.
d ← Vvk(M, σ) — apply verification algorithm V to verification key
vk, message M and candidate signature σ to get a decision
d ∈ {0, 1}.

Correctness requirement: Pr[Vvk(M,Ssk(M)) = 1] = 1 for all (vk, sk)
that may be output by K and all M in the underlying message space. The
latter may depend on the verification key.
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How it works

Step 1: Key generation
Alice locally computes (vk, sk) $←K and stores signing key sk.

Step 2: Alice enables any prospective signature verifier to get vk.

Step 3: Alice can generate a signature σ of a message M using sk.

Step 4: Anyone holding vk can verify that σ is Alice’s signature on M.

We don’t require privacy of vk but we do require authenticity: the sender
should be assured vk is really Alice’s key and not someone else’s. Towards
this, one could

Put verification keys in a trusted but public “phone book”, on one’s
Facebook page or personal webpage, ...
Use certificates as we will see later.
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Signatures versus MACs

Signatures are the public-key version of MACs.

In a MAC, the signing and verifying keys are the same key K . Only
entities that hold K can verify MACs, and verifiers can thus forge MACs.

With signatures, anyone holding vk can verify Alice’s signature under sk.
Verifiers cannot forge signatures.

Suppose Alice uses a MAC to sign checks, the key K shared between her
and her bank. If the bank’s servers are breached, and K is compromised,
the adversary can forge Alice’s checks.

If signatures are used instead, the bank holds Alice’s verification key vk.
The adversary recovering it cannot forge Alice’s checks.
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UF-CMA Security of a DS scheme

Intent: Adversary should not be able to get a verifier to accept σ as Alice’s
signature of M unless Alice has previously signed M, even if adversary can
obtain Alice’s signatures on messages of the adversary’s choice.

A change from UF-CMA for MACs: Adversary gets the verification key.

As with MA schemes, the definition does not require security against
replay. That is handled on top, via counters or time stamps.
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UF-CMA
Let DS = (K,S,V) be a signature scheme.

Game UFCMADS

procedure Initialize
(vk, sk) $←K; S ← ∅
return vk

procedure Finalize(M, σ)
d ← Vvk(M, σ)
return (d = 1 ∧M /∈ S)

procedure Sign(M)
σ $←Ssk(M)
S ← S ∪ {M}
return σ

Definition: uf-cma advantage (digital signature version)
The uf-cma advantage of an adversary A is

Advuf-cma
DS (A) = Pr

[
UFCMAA

DS ⇒ true
]
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UF-CMA: Explanations

The “return vk” statement in Initialize means the adversary A gets the
verification key vk as input. It does not get sk.

It can call Sign with any message M of its choice to get back a correct
signature σ $←Ssk(M) of M under sk. Notation indicates signing
algorithm may be randomized.

To win, it must output a message M and a signature σ that are

Correct: Vvk(M, σ) = 1
New: M ̸∈ S, meaning M was not a query to Sign

Interpretation: Sign represents the signer and Finalize represents the
verifier. Security means that the adversary can’t get the verifier to accept
a message that is not authentic, meaning was not already signed by the
sender.
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Different types of signature forgery

The crypto terminology sometimes distinguishes between different kinds of
forgery.

Existential forgery is when the adversary if free to choose (M, σ).
This is what the UF-CMA game is about.
Selective forgery is similar, except that the adversary must have
chosen M prior to any oracle call.
Universal forgery is when the adversary is able to sign any message.

Our notion of UF-CMA security is that even the least ambitious (easiest)
goal for the adversary should be hard.
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Plain RSA signature scheme

Let Krsa be an RSA generator. The plain RSA signature scheme
DS = (K,S,V) is defined via:

Alg K
(N, p, q, e, d) $←Krsa
Return ((N, e), (N, d))

Alg S(N,d)(y)
x ← yd mod N
Return x

Alg V(N,e)(y , x)
If (x e mod N = y)

then return 1
Else return 0

Above, vk = (N, e) is the verification key and sk = (N, d) is the signing
key.

The message space is Z∗
N , and y ∈ Z∗

N is the message. The signature is
x ∈ Z∗

N .

Correctness: If x ← S(N,d)(y) then

x e mod N = (yd)e mod N = y ed mod φ(N) = y1 = y .
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Security of plain RSA signatures

We let f (x) = x e mod N and f −1(y) = yd mod N.

To forge the signature x = f −1(y) of a message y , the adversary, given
N, e but not d , must compute yd mod N.

But the RSA generator Krsa is assumed OW-secure, so this task should be
hard and the scheme should be secure.

Correct?

Of course not...
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Attacks on plain RSA

adversary A((N, e))
Return (1, 1)

Advuf-cma
DS (A) = 1 because 1d mod N = 1

adversary A((N, e))
Pick some distinct y1, y2 ∈ Z∗

N \ {1}
x1 ← Sign(y1); x2 ← Sign(y2)
Return (y1y2 mod N, x1x2 mod N)

Advuf-cma
DS (A) = 1 because

(y1y2)d mod N = yd
1 yd

2 mod N = x1x2 mod N
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Attacks on plain RSA

adversary A((N, e))
x $← Z∗

N
y ← x e mod N
Return (y , x)

Advuf-cma
DS (A) = 1 because

yd mod N = x ed mod N = x1 mod N = x

This adversary returns a valid signature of something that is probably
garbage. But it is definitely a valid attack, because the adversary achieves
a high advantage in the game!
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Other issues

In plain RSA, the message is an element of Z∗
N . We really want to be able

to sign strings of arbitrary length.
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RSA PKCS#1 signatures
Signer has vk = (N, e) and sk = (N, d) where |N| = 1024.
Let h: {0, 1}∗ → {0, 1}160 be a hash function (like SHA1) and let
n = 1024/8 = 128.

Then
HPKCS(M) = 00||01||FF || . . . ||FF︸ ︷︷ ︸

n−22

|| h(M)︸ ︷︷ ︸
20

And
SN,d(M) = HPKCS(M)d mod N

Idea: Force the element of Z∗
N to be of a very specific form, so that we

can thwart the previous attacks.
The first n − 20 bytes are a “sanity check”. A signature that
doesn’t have the right form is rejected.
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Does 1-wayness prevent forgery?

One-wayness:
No adversary should have a high advantage in the OW game.

Unforgeability:
No adversary should have a high advantage in the UFCMA game.

UCSD CSE107: Intro to Modern Cryptography; Digital signatures 15/34



OW and UFCMA games

Game OWKrsa

procedure Initialize
(N, p, q, e, d) $←Krsa
x $← Z∗

N ; y ← x e mod N
return N, e, y

procedure Finalize(x ′)
return (x = x ′)

Game UFCMADS

procedure Initialize
(vk, sk) $←K; S ← ∅
return vk

procedure Finalize(M, σ)
d ← Vvk(M, σ)
return (d = 1 ∧M /∈ S)

procedure Sign(M)
σ $←Ssk(M)
S ← S ∪ {M}
return σ
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Does 1-wayness prevent forgery?

Goal of a UFCMA adversary: Given (N, e, h), find M and σ such
that σe = HPKCS(M) mod N.
In this game, there is no requirement that y be random.
Goal of a OW adversary: Given (N, e, y), find yd mod N.
Here, y is random.

Problem: 1-wayness of RSA does not imply hardness of computing
yd mod N if y is not random
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HPKCS revisited

Recall
HPKCS(M) = 00||01||FF || . . . ||FF ||h(M)

The first n − 20 = 108 bytes out of n are fixed so HPKCS(M) does not
look “random” even if h is a RO or perfect.

We cannot hope to show RSA PKCS#1 signatures are secure assuming
(only) that RSA is 1-way no matter what we assume about h and even if h
is a random oracle. Such a theorem can’t exist.
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Goal

We will validate the hash-then-decrypt paradigm

SN,d(M) = H(M)d mod N

by showing the signature scheme is provably UF-CMA assuming RSA is
1-way as long as H is a RO.

This says the paradigm has no “structural weaknesses” and we should be
able to get security with “good” choices of H.
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Full-Domain-Hash (FDH) [BR96]
Let Krsa be an RSA generator. Let H : {0, 1}∗ → Z∗

N . The RSA FDH
signature scheme DS = (K,S,V) is defined via:

Alg K
(N, p, q, e, d) $←Krsa
Return ((N, e), (N, d))

Alg S(N,d)(M)
y ← H(M)
x ← yd mod N
Return x

Alg V(N,e)(M, x)
y ← H(M)
If (x e mod N = y)

then return 1
Else return 0

Above, vk = (N, e) is the verification key and sk = (N, d) is the signing
key.

The message space is {0, 1}∗, and M ∈ {0, 1}∗ is the message. The
signature is x ∈ Z∗

N .

Correctness: If x ← S(N,d)(M) and y ← H(M) then

x e mod N = (yd)e mod N = y ed mod φ(N) = y1 = y .
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H needs to be collision resistant
Suppose we have an adversary C that can find a collision for H, meaning
it returns (M1, M2) such that M1 ̸= M2 but H(M1) = H(M2). Then we
can break the RSA FDH signature scheme DS via:

adversary A((N, e))
(M1, M2) $← C
x1 ← Sign(M1)
return (M2, x1)

We have Advuf-cma
DS (A) = 1 because H(M1) = H(M2) implies M1, M2 have

the same signatures:
x1 = S(N,d)(M1) = H(M1)d mod N = H(M2)d mod N = S(N,d)(M2)

Conclusion: UF-CMA security of RSA FDH requires that H be
collision-resistant.

This condition is necessary for UF-CMA. But it is not by itself sufficient.
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Instantiating H in RSA FDH

We seek suitable functions H: {0, 1}∗ → Z∗
N .

First let G be an XOF (eXtendable Output length Function), meaning it
takes W , ℓ and returns ℓ bits. Possible choices are:

G(W , ℓ) = SHAKE256(W , ℓ)
G(W , ℓ) is the first ℓ bits of the sequence

SHA256(⟨0⟩∥W ) ∥SHA256(⟨1⟩∥W ) ∥ · · · ∥SHA256(⟨28 − 1⟩∥W )
where ⟨i⟩ is a 1-byte encoding of i and we assume ℓ ≤ 28 · 256.
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Instantiating H in RSA FDH

Let k be the security parameter associated to our RSA generator Krsa, so
that 2k−1 < N < 2k .

We could set H(M) = G(M, k − 1). However, this function is not onto
ZN , since outputs y in the range 2k−1, . . . , N − 1 are never returned.

Instead we could set H(M) = G(M, 2k) mod N.

These functions return outputs in ZN , while we want outputs in Z∗
N ⊆ ZN .

We can simply ignore this, reasoning as follows.

First, for N a product of two distinct, odd primes, the RSA function x 7→
x e mod N remains a permutation on ZN , with inverse y 7→ yd mod N, so
correctness of the RSA FDH signature scheme is maintained.

Second, if an output y = H(M) is non-zero and in ZN \ Z∗
N , then we can

factor N, so this is unlikely to happen and security is maintained.
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RSA PSS [BR96]

Let Krsa be an RSA generator with k-bit public keys, and ℓ a parameter
satisfying 17 ≤ 2ℓ + 1 < k. Let H1, H2 : {0, 1}∗ → {0, 1}ℓ and H3 :
{0, 1}∗ → {0, 1}k−2ℓ−1.

Example: k = 2048 and ℓ = 256.

The key generation algorithm of the RSA PSS (Probabilistic Signature
Scheme) DS = (K,S,V) is the usual one:

Alg K
(N, p, q, e, d) $←Krsa
Return ((N, e), (N, d))

So vk = (N, e) is the verification key and sk = (N, d) is the signing key.
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RSA PSS signing and verifying

Alg S(N,d)(M)
r $←{0, 1}ℓ
w ← H1(M ∥ r)
r∗ ← H2(w) ⊕ r
y ← 0 ∥ w ∥ r∗ ∥H3(w)
x ← yd mod N
Return x

Alg V(N,e)(M, x)
y ← x e mod N
b ∥ w ∥ r∗ ∥ P ← y
r ← r∗ ⊕ H2(w)
If (H3(w) ̸= P) then return 0
If (b = 1) then return 0
If (H1(M ∥ r) ̸= w) then return 0
Return 1

The message space is {0, 1}∗, and M ∈ {0, 1}∗ is the message. The
signature is x ∈ Z∗

N .
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PSS standardization and usage

RSA PKCS#1 v2.1, v2.2 / RFC 8017
IEEE P1363a
ANSI X9.31
RFC 3447
ISO/IEC 9796-2
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Schnorr signature scheme
Let G = ⟨g⟩ be a cyclic group whose order m is a prime number. Let H :
{0, 1}∗ → Zm. The Schnorr signature scheme DS = (K,S,V) is defined
via

Alg K
x $← Zm
X ← gx

Return (X , x)

Alg SH
x (M)

r $← Zm ; R ← g r

c ← H(R∥M)
s ← (r + cx) mod m
Return (R, s)

Alg VH
X (M, (R, s))

If (R ̸∈ G) then return 0
c ← H(R∥M)
If (g s = RX c) then return 1
Else return 0

Above, vk = X is the verification key and sk = x is the signing key.

The message space is {0, 1}∗, and M ∈ {0, 1}∗ is the message. The
signature is (R, s) ∈ G × Zm.

Correctness: If (R, s) $←Sx (M) then
g s = g r+cx = g r (gx )c = RX c .
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EdDSA signature scheme

EdDSA [BDLSY12] is a Schnorr-based signature scheme over an elliptic
curve group.

Signing key sk is a random string of length a parameter b. It is expanded
into a 2b-bit string x1∥x2. A clamping function is applied to x1 to get the
Schnorr signing key x ∈ Zm.

Signing is made deterministic by setting r to a hash of x2 and the
message.

There are several variants of the scheme.

These schemes are widely standardized, including RFC 8032 and FIPS
186-5. The scheme is used in many places including OpenSSH and GnuPG.
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DSA

Another class of DL-based signatures evolved from the El Gamal signature
scheme.

DSA (Digital Signature Algorithm) is a version over a group Z∗
p where p is

a prime. It was proposed by NIST in 1991 and is in the FIPS 186-4
standard. However a draft of FIPS 186-5 indicates approval may not
continue.

ECDSA (Elliptic Curve Digital Signature Algorithm) is a DSA variant over
an elliptic curve group. It is also in FIPS 186-4.
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Randomization in signatures
We say a signature scheme is randomized if its signing algorithm is
randomized.

Randomized signature schemes include PSS, Schnorr, EdDSA,
DSA/ECDSA.

Re-using coins (random choices) across different signatures is not secure,
but there are (other) ways to make these schemes deterministic without
loss of security. Namely, determine the coins (randomness) of the signing
algorithm as a hash of the signing key and message.

Unlike for encryption, in signatures, randomness is not necessary for
security:

It is possible to have secure deterministic signature schemes (RSA
FDH is one example).
However, in a randomized signature scheme, botching the randomness
part can have dramatic consequences!
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Random numbers, the wrong way
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Hashing in signatures

While randomness is not necessary in signatures, hashing, on the other
hand, is a very useful tool.
In an exercise, a signature scheme with no hashing (or with a very short
hash) is almost certainly going to be weak.
Example:

We are in the RSA setting. sk = (N, d), vk = (N, e). N has k bits.
Messages are bit strings of length k − 128, i.e. integers such that
0 ≤ M < 2k−128.
Signature of M is Md mod N (M is at least 127 bits shorter than a
typical element of Z∗

N).
A signature σ is valid only if σe mod N < 2k−128.

Weakness?

Pretty much the same as plain RSA. (1, 1) is a valid signature,
and so is the product of the signatures of two short messages.
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Other example

We are in the RSA setting. sk = (N, d), vk = (N, e). N has k bits.
Messages are bit strings of length k − 144, i.e. integers such that
0 ≤ M < 2k−144.
Signature of M is (CRC16(M)× 2k−1−16 + M)d mod N.
A signature σ is valid only if the high 16 bits are the CRC of the low
k − 144 bits, and the middle 128 bits are zero.

Weakness?

A CRC is not a hash function! And 16 bits are too few
anyway. It is easy for the adversary to find (short) messages whose CRC is
zero, and whose product also has zero CRC.
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The signature universe

Aggregate signatures, anonymous signatures, blind signatures, chameleon
signatures, convertible undeniable signatures, delegatable signatures,
forward-secure signatures, functional signatures, fuzzy signatures, group
signatures, homomorphic signatures, identity-based signatures, invariant
signatures, key-homomorphic signatures, leakage-resilient signatures, list
signatures, malleable signatures, multi-signatures, online/offline signatures,
partially-blind signatures, policy-based signatures, proactive signatures,
redactable signatures, rerandomizable signatures, ring signatures,
sanitizable signatures, structure-preserving signatures, threshold signatures,
transitive signatures, undeniable signatures, unique signatures, ...

UCSD CSE107: Intro to Modern Cryptography; Digital signatures 34/34


	Digital signatures
	Motivation and definitions
	RSA signatures
	Using hash functions
	Full Domain Hash
	RSA PSS (Probabilistic Signature Scheme)
	DLog-based signature schemes


