
CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 10, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/


Lecture 10c

A few important points about DLog and RSA



RSA: what to remember

The RSA function f (x) = x e mod N is a trapdoor one way permutation:

Easy forward: given N, e, x it is easy to compute f (x)
Easy back with trapdoor: Given N, d and y = f (x) it is easy to
compute x = f −1(y) = yd mod N
Hard back without trapdoor: Given N, e and y = f (x) it is hard to
compute x = f −1(y)
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RSA key sizes

Factoring is hard. The largest RSA key factorization that is publicly known
is 829 bits.

Conventional wisdom is that factoring a 1024-bit RSA modulus takes less
than 280 time, and is well within range of state-level adversaries.

A 2048-bit key is the bare minimum of security recommendations
worldwide, but it only provides an estimated 112 bits of security.

In order to have 128 bits of security, a 3072-bit key is necessary. This is
large, and imposes a constraint on some devices and protocols.

Caveat: these large-bit-size extrapolations are not based on very firm
theoretical ground.
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Exponentiation: what to remember

In a group G of order #G (example: in Z∗
p, which has order p − 1), every

element has an order, which is a divisor of #G .

Order of G : number of elements in G .
Order of an element a ∈ G : smallest integer ℓ > 0 such that aℓ = id.

Let a ∈ G of order ℓ. The element ak ∈ G can be computed for any
k ∈ Z. Furthermore, since a has order ℓ:

ak = ak+ℓ = ak+2ℓ = · · ·

Therefore, we may just as well say that we compute ak for k ∈ Z#G , or
even for k ∈ Zℓ (which representative we take modulo ℓ does not matter).
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DLog: what to remember

In any group that we intend to use in cryptography, the exponentiation
problem is easy.

Square-and-multiply computes ak from a ∈ G and k ∈ Z#G in
O(log k) group law operations in G .
For example, in Z∗

p, which has order p − 1, a group law operation
costs O((log p)2), and thus exponentiation costs O((log p)3)
(assuming k and p − 1 have the same size).
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DLog: what to remember

In contrast, the discrete logarithm problem (DLP) is hard.

To go from ak back to k, the stupid algorithm works, but it takes
forever (O(#G) operations).
There are mildly faster algorithms that work in any group (we did not
discuss them), but they take O(

√
#G), which is still exponential in

log #G . On elliptic curves, this is the best we can do.
In groups like Z∗

p, there are advanced ways to compute discrete
logarithms, with sub-exponential complexity. Very roughly, it is

e1.92(ln p)1/3(ln ln p)2/3
.

DLog remains a hard problem nevertheless. Cryptanalysis results and
key length recommendations are in line with RSA.
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Lecture 12

Hybrid Encryption and KEMs

Building PKE schemes with hybrid encryption

We need KEMs



Plan

Building PKE schemes with hybrid encryption

We need KEMs



How do we achieve security

The goals are set. How do we achieve IND-X (e.g., IND-CCA) security?

We have some building blocks (Diffie-Hellman key exchange, RSA),
but the translation to PKE is not immediate.
We need to take many precautions in the design, because security is
not always an easy thing to achieve!
We want to leverage the existing (secure) building blocks to our
advantage.

Main idea:

Use public-key encryption to establish a (shared, secret) key K .
Use K to encrypt the message with a symmetrickey encryption
scheme.
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Hybrid encryption

The task of building an asymmetric encryption scheme AE is simplified by
hybrid encryption. The ingredients are

A key encapsulation mechanism (KEM) KE
a symmetric encryption scheme SE .

To encrypt message M under encryption key ek:

Run the key encapsulation mechanism on input ek to obtain a
symmetric key K and a ciphertext Ca encrypting it
Encrypt M with K using the symmetric encryption scheme to get a
ciphertext Cs

Return (Ca, Cs) as the ciphertext

Benefits: Modularity of design and analysis, speed.
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Syntax of a Key Encapsulation Mechanism (KEM)

Definition (Key Encapsulation Mechanism, a.k.a. KEM)
A KEM KE = (KK, EK,DK) is a triple of algorithms. Associated to it is
an integer k called the key length. The algorithms operate as follows:

(ek,dk) $←KK — generate an encryption key ek and matching
decryption key dk

(K , Ca) $←EKek — generate a key K ∈ {0, 1}k together with a
ciphertext Ca encrypting K . Algorithm EK may be randomized.
K ′ ← DKdk(Ca) — decrypt ciphertext Ca under decryption key dk to
get an output K ′ ∈ {0, 1}∗ ∪ {⊥}.

The correct decryption requirement is that, for all (ek,dk) that may be
output by KK, we have K ′ = K with probability 1 when (K , Ca) $←EKek

and K ′ ← DKdk(Ca).
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KEM Security

Let KE = (KK, EK,DK) be a KEM with key length k. Security requires
that if we let

(K1, Ca) $←EKek

then K1 should look “random”. Somewhat more precisely, if we also
generate K0

$←{0, 1}k ; b $←{0, 1} then

A
Ca

Kb
?

The adversary A has a hard time figuring out b

As we did for symmetric and public-key encryption schemes, we can define
security games for KEMs.
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KEM IND-CPA security games

Let KE = (KK, EK,DK) be a KEM with key length k.

Game LeftKE

procedure Initialize
(ek, dk) $←KK
return ek
procedure Enc
K0

$←{0, 1}k ; (K1, Ca) $←EKek

return (K0, Ca)

Game RightKE

procedure Initialize
(ek, dk) $←KK
return ek
procedure Enc
K0

$←{0, 1}k ; (K1, Ca) $←EKek

return (K1, Ca)

Definition (ind-cpa advantage Advind-cpa for KEMs)
The (ind-cpa) advantage of an adversary A is

Advind-cpa
KE (A) = Pr

[
RightA

KE ⇒ 1
]
− Pr

[
LeftA

KE ⇒ 1
]
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KEM IND-CCA security games
Let KE = (KK, EK,DK) be a KEM with key length k.

Game LeftKE

procedure Initialize
(ek,dk) $←KK ; S ← ∅ ; return ek

procedure Enc
K0

$←{0, 1}k ; (K1, Ca) $←EKek

S ← S ∪ {Ca} ; return (K0, Ca)
procedure Dec(Ca)
if Ca ∈ S then return⊥
else K ← DKdk(Ca) ; return K

Game RightKE

procedure Initialize
(ek,dk) $←KK ; S ← ∅ ; return ek

procedure Enc
K0

$←{0, 1}k ; (K1, Ca) $←EKek

S ← S ∪ {Ca} ; return (K1, Ca)
procedure Dec(Ca)
if Ca ∈ S then return⊥
else K ← DKdk(Ca) ; return K

Definition (ind-cca advantage Advind-cca for KEMs)
The (ind-cca) advantage of an adversary A is

Advind-cca
KE (A) = Pr

[
RightA

KE ⇒ 1
]
− Pr

[
LeftA

KE ⇒ 1
]
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Definitional chart

IND-CPA IND-CCA
PKE
KEM
SE

Three types of schemes/syntax : Public-key encryption, key
encapsulation mechanism, symmetric encryption
For each, two definitions of security: IND-CPA, IND-CCA

For all three types of schemes/syntax: IND-CCA implies IND-CPA
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Hybrid encryption
Given: A KEM KE = (KK, EK,DK) with key length k

A symmetric encryption scheme SE = (KS, ES,DS) for which
KS returns random k-bit keys.

Hybrid encryption associates to the above a PKE scheme AE = (K, E ,D):

Alg K
(ek,dk) $←KK
return (ek, dk)

Alg Eek(M)
(K , Ca) $←EKek

Cs
$←ESK (M)

return (Ca, Cs)

Alg Ddk((Ca, Cs))
K ← DKdk(Ca)
M ← DSK (Cs)
return M

Above, it is understood that if any input to an algorithm is ⊥, then so is
the output.
In layman terms:

Use the KEM to securely communicate some random encryption key
to the receiving party.
Use the symmetric encryption scheme with the freshly generated key
to encrypt the bulk of the message.
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KEMs, graphically

Bob wants to send a message to Alice.

EK DK

ek dk

ES DS

KK

K K

M Cs
$ Cs

Ca
$ Ca

M or ⊥

A
(adversary)
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Hybrid encryption works

If the KEM and symmetric encryption scheme are both IND-X, then so is
the PKE scheme constructed by hybrid encryption.

Theorem
Let KE = (KK, EK,DK) be a KEM with key length k. Let SE = (KS,
ES,DS) be a symmetric encryption scheme for which KS returns random
k-bit keys. Let AE = (K, E ,D) be the corresponding PKE scheme built
via hybrid encryption. Let X ∈ {cpa, cca}. Let A be an adversary making
qe LR queries. Then there are adversaries Ba, Bs such that

Advind-X
AE (A) ≤ 2 · Advind-X

KE (Ba) + qe · Advind-X
SE (Bs) .

The number of Enc queries of Ba is qe . The number of LR queries of Bs
is 1. In the X = cca case, Ba, Bs each make the same number of Dec
queries as A. The running times of Ba, Bs are about the same as that of A.
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Benefits of hybrid encryption

Modular design: Many choices of components, KEMs are simpler than
PKE schemes.

Assurance via proof as per above Theorem saying hybrid encryption
works.

Speed: The block ciphers and hash functions used in symmetric
cryptography are much faster (factors of 100x to 10,000x depending on
platforms) than the operations on numbers used for asymmetric
cryptography.

So performance is improved by limiting the number-theoretic operations as
in hybrid encryption.
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Plan

Building PKE schemes with hybrid encryption

We need KEMs



KEMs, graphically
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Where we are

We know how to achieve IND-X-secure PKE given

An IND-X-secure KEM, and
An IND-X-secure symmetric encryption scheme

We have plenty of symmetric encryption schemes:

For the IND-CPA case: AES-CTR$, AES-CBC$, ...
For the IND-CCA case: Encrypt-then-Mac, OCB, GCM, ...

But simpler, deterministic choices are possible too, since security is only
required against adversaries Bs making 1 LR query. (see Theorem)

We need KEMs.

We will build KEMs using number theory, considering in turn using the DL
problem and using RSA.
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Plan

We need KEMs
Hashing in KEMs, and the Random Oracle Model
KEMs from DL / KEMs from CDH
KEMs and PKEs from RSA



Hashing in KEMs

Our KEMs may use (public, keyless) functions Hi : {0, 1}∗ → {0, 1}ℓi , for
1 ≤ i ≤ n.

The number n of them, and their output lengths, depend on the scheme.
Usually n = 1 or n = 2.

In practice (implementation), these are built from cryptographic hash
functions as discussed next.

Proofs of security for the KEMs use the Random Oracle Model (ROM) in
which H1, . . . , Hn are modeled as independent random functions.
H1, . . . , Hn are formalized as game procedures to which scheme
algorithms, as well as the adversary, have oracle access, and are thus called
Random Oracles (ROs).
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Practical choices for the Hi

We seek suitable functions Hi : {0, 1}∗ → {0, 1}ℓi , for 1 ≤ i ≤ n.

SHAKE256 is an XOF (eXtendable Output length Function) that takes an
input indicating the number of output bits returned.

So we could set Hi(x) = SHAKE256(⟨i⟩∥x , ℓi) where ⟨i⟩ is a 1-byte
encoding of i and we assume n < 28.

We could also set Hi(x) to the first ℓi bits of the sequence

SHA256(⟨0⟩∥⟨i⟩∥x) ∥SHA256(⟨1⟩∥⟨i⟩∥x) ∥ · · · ∥SHA256(⟨28 − 1⟩∥⟨i⟩∥x)

This assumes ℓi ≤ 28 · 256.

Heuristically, we desire that H1, . . . , Hn “behave like independent random
functions.” But there is no corresponding formal definition.
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Plan

We need KEMs
Hashing in KEMs, and the Random Oracle Model
KEMs from DL / KEMs from CDH
KEMs and PKEs from RSA



Syntax of a Key Encapsulation Mechanism (KEM)

Definition (Key Encapsulation Mechanism, a.k.a. KEM)
A KEM KE = (KK, EK,DK) is a triple of algorithms. Associated to it is
an integer k called the key length. The algorithms operate as follows:

(ek,dk) $←KK — generate an encryption key ek and matching
decryption key dk

(K , Ca) $←EKek — generate a key K ∈ {0, 1}k together with a
ciphertext Ca encrypting K . Algorithm EK may be randomized.
K ′ ← DKdk(Ca) — decrypt ciphertext Ca under decryption key dk to
get an output K ′ ∈ {0, 1}∗ ∪ {⊥}.

The correct decryption requirement is that, for all (ek,dk) that may be
output by KK, we have K ′ = K with probability 1 when (K , Ca) $←EKek

and K ′ ← DKdk(Ca).
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KEMs from DL?

Let G = ⟨g⟩ be a cyclic group of order m in which the DL problem is hard.
Can we design a KEM KE = (KK, EK,DK) whose IND-CPA security
reduces to DL?

How about: Let the receiver’s encryption key be g . Let EKg pick
x $← Zm and return (x , X ) where X = gx .

Then obtaining x from X requires solving DL, and would be hard for an
adversary.

So are we done?

No. The legitimate receiver has no way to decrypt X , to obtain x , short of
computing DL.

A sign that something is amiss is that, in the above scheme, the receiver
has no decryption key.
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Recall DHSecret Key Exchange

Let G = ⟨g⟩ be a cyclic group of order m.

Alice Bob

x $← Zm; X ← gx mod p
X−−−−−−→

y $← Zm; Y ← gy

Y←−−−−−−
KA ← Y x KB ← X y

Y x = (gy )x = gxy = (gx )y = X y , so KA = KB

Adversary is faced with the CDH problem, which needs to be assumed
hard for security. This is a stronger requirement than hardness of DL.
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From key exchange to PKE

We can turn DHkey exchange into a PKE scheme via

Alice has encryption key X = gx and decryption key x $← Zp−1
If Bob wants to encrypt message M for Alice, he

Picks y $← Zp−1 and sends Y = gy to Alice
Computes Z = (gx )y = gxy , hashes it to get a key K , encrypts M
symmetrically under K to get a ciphertext Cs , and sends Cs to Alice.

Alice can recompute Z = Y x = gxy using her decryption key x . Then
she can recompute K and decrypt Cs under it to get M.

The adversary is faced with either solving CDH or breaking the symmetric
encryption scheme.
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The DHIES scheme

Let G = ⟨g⟩ be a cyclic group of order m and H: G → {0, 1}n a (public)
hash function. The DHIES PKE scheme AE = (K, E ,D) is defined for
messages M ∈ {0, 1}n via

Alg K
x $← Zm
X ← gx

return (X , x)

Alg EX (M)
y $← Zm; Y ← gy

K ← X y

W ← H(K ) ⊕ M
return (Y , W )

Alg Dx (Y , W )
K ← Y x

M ← H(K ) ⊕W
return M

Correct decryption is assured because K = X y = gxy = Y x

Note: This is a simplified version of the actual scheme.
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DHIES as Hybrid Encryption

DHIES is built along the lines of the Hybrid encryption mechanism.

Pattern matching exercise:

Can you write down the underlying KEM and its algorithms
(KK, EK,DK), based on the description of the resulting PKE?
What is the underlying symmetric encryption scheme?
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DHIES as Hybrid Encryption
Can you write down the KEM inside DHIES and its algorithms
(KK, EK,DK), based on the description of DHIES as the resulting PKE?

Bob talks to Alice.
Who runs KK?

Alice.
Alice keeps dk. Bob gets ek.
Who runs EK? Bob.
EK uses ek.
ek must be X ; dk must be x .

EK DK

ek dk

ES DS

KK

K K

M Cs
$ Cs

Ca
$ Ca

M or ⊥

A
(adversary)

The output of EK consists of:

K = what Bob will use to encrypt the plaintext.
Notations aren’t too bad, it’s K = X y .
Ca = the encapsulation of K that Alice should decrypt prior to
attempting the decryption of Cs . The encapsulation is. . .

Y , because
Alice can recover K = X y = gxy from just Y and sk.
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Security of DHIES

The DHIES scheme AE = (K, E ,D) associated to cyclic group G = ⟨g⟩
and (public) hash function H can be proven IND-CPA assuming

CDH is hard in G , and
H is a “random oracle,” meaning a “perfect” hash function.

Our simplified version does not make it easy to prove IND-CCA security,
and the more complete version of the protocol is designed to make that
possible.
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ECIES

ECIES is DHIES with the group being an elliptic curve group.

ECIES features:

Operation Cost
encryption 2 256-bit exp
decryption 1 256-bit exp

ciphertext expansion 256 bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)
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Plan

We need KEMs
Hashing in KEMs, and the Random Oracle Model
KEMs from DL / KEMs from CDH
KEMs and PKEs from RSA



Plain-RSA PKE scheme

Let Krsa be an RSA generator.
The plain RSA PKE scheme AE = (K, E ,D) is defined via:

Alg K
(N, p, q, e, d) $←Krsa
Return ((N, e), (N, d))

Alg E(N,e)(M)
C ← Me mod N
return C

Alg D(N,d)(C)
M ← Cd mod N
return M

Above, (N, e) is the encryption key and (N, d) is the decryption key.

Decryption correctness: The “easy-backwards with trapdoor” property
implies that for all M ∈ Z∗

N we have Ddk(Eek(M)) = M.

Note: The message space is Z∗
N . Messages are assumed to be all encoded

as strings of the same length, for example length 4 if N = 15.
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Security of the Plain-RSA PKE scheme

Let Krsa be an RSA generator.
The plain RSA PKE scheme AE = (K, E ,D) is defined via:

Alg K
(N, p, q, e, d) $←Krsa
Return ((N, e), (N, d))

Alg E(N,e)(M)
C ← Me mod N
return C

Alg D(N,d)(C)
M ← Cd mod N
return M

Getting d from (N, e) involves factoring N.

But E is deterministic so. . .

we can detect repeats and the scheme is
not IND-CPA secure.
Plain RSA as a PKE has many other flaws, such as malleability.
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The SRSA scheme

The SRSA PKE scheme AE = (K, E ,D) associated to RSA generator Krsa
and (public) hash function H: {0, 1}∗ → {0, 1}n encrypts n-bit messages
via:

Alg K
(N, p, q, e, d) $←Krsa
ek ← (N, e)
dk ← (N, d)
return (ek,dk)

Alg EN,e(M)
x $← Z∗

N
K ← H(x)
Ca ← x e mod N
Cs ← K ⊕ M
return (Ca, Cs)

Alg DN,d(Ca, Cs)
x ← Cd

a mod N
K ← H(x)
M ← Cs ⊕ K
return M
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SRSA as Hybrid Encryption

SRSA is built along the lines of the Hybrid encryption mechanism.

Pattern matching exercise:

Can you write down the underlying KEM and its algorithms
(KK, EK,DK), based on the description of the resulting PKE?
What is the underlying symmetric encryption scheme?
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Security of SRSA

The SRSA PKE scheme AE = (K, E ,D) associated to RSA generator Krsa
and (public) hash function H: {0, 1}∗ → {0, 1}n can be proven IND-CPA
assuming

Krsa is one-way
H is a “random oracle,” meaning a “perfect” hash function.
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SRSA features

In order to have 128-bit security, RSA keys must be as large as 3072 bits.
SRSA features:

Operation Cost
encryption 1 small exponentiation modulo a 3072-bit N
decryption 1 large exponentiation modulo a 3072-bit N

ciphertext expansion 3072 bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)
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PKE summary

Scheme IND-CPA?
DHIES Yes

Plain RSA No
SRSA Yes

RSA OAEP Yes
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KEMs summary

KEMs are used inside Hybrid Encryption.
We have proper security notions for KEMs, for symmetric encryption
schemes, and that leads to proper security notions for the resulting
PKE.
In several cases, writing down the KEM part of a PKE seems a bit
artificial, given that a DH Key exchange or the RSA functions can do
a lot more than a KEM.
Some other cryptographic primitives, however (esp. in the
post-quantum setting) only define KEMs, and that is fine.
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Exercise
Let m, k, ℓ be integers such that 2 ≤ m < k and k ≥ 2048 and
ℓ = k −m− 1 and ℓ is even. Let Krsa be a RSA generator with associated
security parameter k. Consider the key-generation and encryption
algorithms below, where M ∈ {0, 1}m:

Alg K
(N, e, d , p, q) $←Krsa
return ((N, e), (N, d))

Alg E((N, e), M)
Pad $←{0, 1}ℓ ; x ← 0 ∥ Pad ∥M
C ← x e mod N ; return C

1. Specify a O(k3)-time decryption algorithm D such that
AE = (K, E ,D) is an asymmetric encryption scheme satisfying the
correct decryption property.

2. Specify an adversary A making at most 2ℓ/2 queries to its LR oracle
and achieving Advind-cpa

AE (A) ≥ 1/4. Your adversary should have
O(k · 2ℓ/2) running time, not counting the time taken by game
procedures to execute.
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