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RSA Math

Recall that φ(N) = |Z∗
N |.

Claim: Suppose e, d ∈ Z∗
φ(N) satisfy ed mod φ(N) = 1. Then for any

x ∈ Z∗
N we have

(x e)d mod N = x .

Proof:

(x e)d mod N = x ed mod φ(N) mod N
= x1 mod N = x
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The RSA function
A modulus N and encryption exponent e ∈ Z∗

φ(N) define the RSA function
f : Z∗

N → Z∗
N via:

f (x) = x e mod N

for all x ∈ Z∗
N .

A value d ∈ Z ∗
φ(N) satisfying ed mod φ(N) = 1 is called a decryption

exponent.

Claim: The RSA function f : Z∗
N → Z∗

N is a permutation with inverse
f −1 : Z∗

N → Z∗
N given by

f −1(y) = yd mod N

Proof: For all x ∈ Z∗
N , the prior claim says that we have

f −1(f (x)) = (x e)d mod N = x .
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Example

Let N = 15. So

Z∗
N = {1, 2, 4, 7, 8, 11, 13, 14}

φ(N) = 8
Z∗

φ(N) = {1, 3, 5, 7}

Let e = 3 and d = 3. Then

ed ≡ 9 ≡ 1 (mod 8)

Let

f (x) = x3 mod 15
g(y) = y3 mod 15

x f (x) g(f (x))
1 1 1
2 8 2
4 4 4
7 13 7
8 2 8
11 11 11
13 7 13
14 14 14
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Trapdoor permutation

RSA is a trapdoor, one-way permutation:

Easy to invert given trapdoor d
Hard to invert given only N, e

The second is true, to best of our current knowledge, for
appropriately-chosen parameters N, e, d .

The choice of parameters is done by an algorithm called an RSA generator.
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RSA generators

An RSA generator with security parameter k is an algorithm Krsa that
returns N, p, q, e, d satisfying

p, q are distinct odd primes
N = pq, and is called the (RSA) modulus
|N| = k, meaning 2k−1 ≤ N ≤ 2k

e ∈ Z∗
φ(N) is called the encryption exponent

d ∈ Z∗
φ(N) is called the decryption exponent

ed mod φ(N) = 1
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A formula for Phi

Fact: Suppose N = pq for distinct primes p and q. Then

φ(N) = (p − 1)(q − 1) .

Example: Let N = 15 = 3 · 5. Then the Fact says that

φ(15) = (3− 1)(5− 1) = 8.

As a check, Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14} indeed has size 8.
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A more general formula for Phi
Fact: Suppose N ≥ 1 factors as

N = pα1
1 · p

α2
2 · . . . · pαn

n

where p1 < p2 < . . . < pn are primes and α1, . . . , αn ≥ 1 are integers.
Then

φ(N) = pα1−1
1 (p1 − 1) · pα2−1

2 (p2 − 1) · . . . · pαn−1
n (pn − 1)

= N ×
(

1− 1
p1

)
×

(
1− 1

p2

)
× · · · ×

(
1− 1

pn

)
.

Note prior Fact is a special case of the above.

Example: Let N = 45 = 32 · 51. Then the Fact says that

φ(45) = 31(3− 1) · 50(5− 1) = 24
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Recall

Given φ(N) and e ∈ Z∗
φ(N), we can compute d ∈ Z∗

φ(N) satisfying
ed mod φ(N) = 1 via

d ← MOD-INV(e, φ(N)).

We have algorithms to efficiently test whether a number is prime, and we
know that a random number has a pretty good chance of being a prime.

We use these facts to build RSA generators.
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Building RSA generators

Say we wish to have e = 3. (We will see that the smaller is e, the more
efficient is encryption.)
The generator Ke=3

rsa with (even) security parameter k is as follows:

Alg Ke
rsa(k) // e is our public-key exponent parameter

repeat
p $←{2k/2−1, . . . , 2k/2 − 1};
q $←{2k/2−1, . . . , 2k/2 − 1};
N ← pq; M ← (p − 1)(q − 1)

until N ≥ 2k−1 and p, q are prime and gcd(e, M) = 1
d ← MOD-INV(e, M)
return N, p, q, e, d
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One-wayness of RSA

The following should be hard:

Given: N, e, y where y = f (x) = x e mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.
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One-wayness of RSA, formally

Let Krsa be a RSA generator.

Game OWKrsa

procedure Initialize
(N, p, q, e, d) $←Krsa
x $← Z∗

N ; y ← x e mod N
return N, e, y

procedure Finalize(x ′)
return (x = x ′)

Definition (ow-advantage Advow)
The ow-advantage of an adversary A is

Advow
Krsa

(A) = Pr
[
OWA

Krsa
⇒ true

]
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Inverting RSA

Inverting RSA : given N, e, y find x such that x e mod N = y

EASY because x = yd mod N

Know d

EASY because d = MOD-INV(e, φ(N))

Know φ(N)

EASY because φ(N) = (p − 1)(q − 1)

Know p, q

?

Know N
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Factoring Problem

Given: N where N = pq and p, q are prime

Find: p, q

If we can factor we can invert RSA. We do not know whether the converse
is true, meaning whether or not one can invert RSA without factoring.
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A factoring algorithm

Alg FACTOR(N) // N = pq where p, q are primes

for i = 2, . . . ,
⌈√

N
⌉

do
if N mod i = 0 then

p ← i ; q ← N/i ; return p, q

This algorithm works but takes time

O(
√

N) = O(e0.5 ln N)

which is prohibitive.
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Factoring algorithms

Algorithm Time taken to factor N
Naive O(e0.5 ln N)

Quadratic Sieve (QS) O(ec(ln N)1/2(ln ln N)1/2)
Number Field Sieve (NFS) O(e1.92(ln N)1/3(ln ln N)2/3)
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Factoring records

bit-length of number When factored Algorithm used
400 1993 QS
428 1994 QS
431 1996 NFS
465 1999 NFS
512 1999 NFS
576 2003 NFS
768 2009 NFS
795 2019 NFS
829 2020 NFS
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Moduli sizes

We estimate that a 1024-bit RSA modulus provides 80 bits of security,
meaning factoring it takes 280 time.

Factorization of a 1024-bit modulus hasn’t been done yet in public, but is
within reach of large organizations. Longer moduli, like 2048 bits, have
been recommended since around 2010.
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Choices of encryption exponent

Common choices are e = 3, e = 17 and e = 65, 537. Why these?

e bin(e)
3 11
17 10001
65,537 10000000000000001

Recall that the modular exponentiation algorithm computing x 7→
x e mod N uses c(b) modular multiplications per bit b ∈ {0, 1} in the
binary expansion bin(e), where c(0) = 1 and c(1) = 2. So the fewer the
number of 1s in bin(e), the faster is the operation.
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Low-exponent and other attacks

Further attacks on RSA include

Coppersmith’s attack
Franklin-Reiter attack
Håstad attack

These work for small encryption exponents but do not violate OW-security.

If RSA-based public-key encryption and digital signature schemes use RSA
appropriately, these attacks do not threaten them, even if the encryption
exponent is small.

Accordingly, in designing RSA-based public-key encryption and digital
signature schemes, we seek proofs of security based (only) on the
OW-security of RSA.
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RSA Video

http://www.youtube.com/watch?v=wXB-V_Keiu8
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RSA: what to remember

The RSA function f (x) = x e mod N is a trapdoor one way permutation:

Easy forward: given N, e, x it is easy to compute f (x)
Easy back with trapdoor: Given N, d and y = f (x) it is easy to
compute x = f −1(y) = yd mod N
Hard back without trapdoor: Given N, e and y = f (x) it is hard to
compute x = f −1(y)
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The quantum threat

On a quantum computer, Shor’s algorithm can compute discrete
logarithms and factor in polynomial time.

Quantum computer capable of running Shor’s algorithm don’t exist, but
efforts to build quantum computers that scale are underway.

RSA and DH can be replaced by elliptic curve cryptography, which has
much smaller keys because the DLog problem is a lot harder on elliptic
curves. However, elliptic curves are also threatened by quantum
computers.

Efforts are underway to standardize public-key cryptography based on
computational problems like finding short vectors in lattices for which
there are currently no known efficient quantum algorithms.
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Lecture 11

Public-Key Encryption Schemes

Security notions for PKE schemes



Two settings

Symmetric encryption:

Before Alice and Bob can communicate securely, they need to have a
common secret key KAB.
If Alice wishes to also communicate with Charlie then she and Charlie
must also have another common secret key KAC .
If Alice generates KAB, KAC , they must be communicated to her
partners over private and authenticated channels.

Asymmetric (public-key) encryption:

Alice has a secret decryption key dk that is shared with nobody, and
an associated public encryption key ek that is known to everybody.
Anyone (Bob, Charlie, . . .) can use Alice’s encryption key ek to send
her an encrypted message which only she can decrypt.
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Syntax of a PKE scheme

A public-key (or asymmetric) encryption scheme AE = (K, E ,D) consists
of three algorithms that operate as follows:

(ek,dk) $←K — generate an encryption key ek and matching
decryption key dk

C $←Eek(M) — encrypt message M under encryption key ek to get a
ciphertext C . Algorithm E may be randomized.
M ′ ← Ddk(C) — decrypt ciphertext C under decryption key dk to
get an output M ′ ∈ {0, 1}∗ ∪ {⊥}.
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Correct decryption requirement

Let AE = (K, E ,D) be an asymmetric encryption scheme. The correct
decryption requirement is that

Pr[Ddk(Eek(M)) = M] = 1

for all (ek, dk) that may be output by K and all messages M in the
message space of AE . The probability is over the random choices of E .

This simply says that decryption correctly reverses encryption to recover
the message that was encrypted. When we specify schemes, we indicate
what is the message space.
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How it works

Step 1: Key generation
Alice locally computes (ek,dk) $←K and stores dk.

Step 2: Alice enables any prospective sender to get ek.

Step 3: The sender encrypts a message M under ek and sends the
ciphertext C to Alice.

Step 4: Alice decrypts C under dk to recover M.
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Verifying the authenticity of public keys

We don’t require privacy of ek but we do require authenticity: the sender
should be assured ek is really Alice’s key and not someone else’s.

This is solved in a variety of imperfect ways in practice. One could:

Use certificates as we will see later. (TLS)
Verify a fingerprint/hash of the public key through an out of band
channel. (Signal)
Use existing trusted infrastructure, like social media accounts.
(Keybase)
Build a social network of digital signatures. (PGP)
Trust on first use and verify fingerprint/hash in the future. (SSH)
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Security of PKE Schemes

We formalize two goals:

IND-CPA: Indistinguishability under chosen-plaintext attack. Just
like for symmetric encryption, except that adversary needs to be given
the encryption key.
IND-CCA: Indistinguishability under chosen-ciphertext attack. A
stronger goal in which the adversary also has (limited) access to a
decryption oracle.
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PKE IND-CPA security games

Let AE = (K, E ,D) be a PKE scheme.

Game LeftAE

procedure Initialize
(ek,dk) $←K
return ek

procedure LR(M0, M1)
return Eek(M0)

Game RightAE

procedure Initialize
(ek, dk) $←K
return ek

procedure LR(M0, M1)
return Eek(M1)

Definition (ind-cpa advantage Advind-cpa, public-key version)
The (ind-cpa) advantage of an adversary A is

Advind-cpa
AE (A) = Pr

[
RightA

AE ⇒ 1
]
− Pr

[
LeftA

AE ⇒ 1
]
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PKE IND-CPA: Explanations

The “return ek” statement in Initialize means the adversary A gets the
encryption key ek as input. It does not get dk.

It can call LR with any equal-length messages M0, M1 of its choice to get
back an encryption C $←Eek(Mb) of Mb under ek, where b = 0 in game
LeftAE and b = 1 in game RightAE . Notation indicates encryption
algorithm may be randomized.

A is not allowed to call LR with messages M0, M1 of unequal length. Any
such A is considered invalid and its advantage is undefined or 0.

It outputs a bit, and wins if this bit equals b.

Questions:

Since ek is public, why can’t the adversary run LR by itself?

Because
the bit b is secret!
Can we have IND-CPA security if E is deterministic? NO!
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Chosen-ciphertext attacks

In addition to the LR oracle, the adversary now has access to a second
oracle which can decrypt messages.

Dec
C
M

Dec knows the decryption key dk and returns M ← Ddk(C).

Adversary’s goal is to learn partial information about un-decrypted
messages from their ciphertexts.
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PKE IND-CCA security games
Let AE = (K, E ,D) be a PKE scheme.

Game LeftAE

procedure Initialize
(ek,dk) $←K ; S ← ∅ ; return ek

procedure LR(M0, M1)
C $←Eek(M0) ; S ← S ∪ {C}
return C
procedure Dec(C)
if C ∈ S then return ⊥
else M = Ddk(C) ; return M

Game RightAE

procedure Initialize
(ek, dk) $←K ; S ← ∅ ; return ek

procedure LR(M0, M1)
C $←Eek(M1) ; S ← S ∪ {C}
return C
procedure Dec(C)
if C ∈ S then return ⊥
else M = Ddk(C) ; return M

Definition (ind-cca advantage Advind-cca)
The ind-cca advantage of an adversary A is

Advind-cca
AE (A) = Pr

[
RightA

AE ⇒ 1
]
− Pr

[
LeftA

AE ⇒ 1
]
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PKE IND-CCA: Explanations

Just like IND-CPA, except that the adversary now also has access to a
decryption oracle Dec.

It can call Dec with any ciphertext C of its choice.

To prevent trivial attacks, Dec(C) returns ⊥ if C was in the set S,
meaning had been previously returned by the LR oracle.
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Remarks

IND-CPA is recovered as IND-CCA with adversaries restricted to make
zero Dec queries. This shows that IND-CCA implies IND-CPA: any
scheme satisfying the former also satisfies the latter.

The converse is false. As an exercise, assume you are given an IND-CPA
PKE scheme, and construct another PKE scheme that (1) is IND-CPA
secure, but (2) is not IND-CCA secure.

Modern applications and usage of PKE call for IND-CCA, and it is now
the canonical and accepted goal for PKE.

IND-CCA can be defined also for symmetric encryption schemes, and is
implied by IND-CPA+INT-CTXT.

UCSD CSE107: Intro to Modern Cryptography; Public-Key Encryption Schemes 34/34


	RSA
	RSA
	One-wayness of RSA
	Formalization
	Factoring
	Other attacks
	Wrap up


	Public-Key Encryption Schemes
	Security notions for PKE schemes


